The Nagios 2.X Event Broker Module API
Introduction

The purpose of this document is three-fold:

1. Catalog and explain the API used for writing Nagios Event Broker (NEB) Modules and,

2. Touch upon what can and can’t be done with the “stock” NEB Module API and,

3. Identify key Nagios structures and internal Nagios “Helper Routines” that can be used to manipulate Nagios from within an NEB Module.

This document assumes that the reader is familiar with the Nagios Event Broker (NEB) concept and the basic structure of an NEB Module.  If not, Taylor Dondich (of OpenGroundWork fame) has created an excellent two-part introduction, available on his company’s website.

Also, while not strictly required, it is very beneficial to have at least a passing knowledge of the C programming language, in order to be able to follow the example code.

Finally, this document will (hopefully) be a continuing work-in-progress.  It is currently by no means exhaustive in its treatment of what tricks, hacks and other functionality can be derived via the NEB Module mechanism.  Any errors, omissions or bad spelling are mine and I would appreciate all (constructive) feedback on this subject.  I can be reached via e-mail: bobi-AT-netshel-DOT-net.
Author, Copyright and License
This document was written by and is copyright © Robert W. Ingraham.

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Revision History

	Date
	Author
	Comments

	2006-07-28
	Robert W. Ingraham
	First publication date.

	
	
	


Overview of the NEB Communication Model
From a software point-of-view, Nagios communicates with user-written NEB Modules using a Publish-Subscribe model.

In this model, modules are first identified to Nagios via the “module” directive in the Nagios configuration file.  When the Nagios process starts, one of its startup tasks is to load identified modules into its address-space using the dynamic linker facility (much like a DLL under Windows.)
After a module is loaded into Nagios’ memory space, Nagios searches the module for the module’s initialization function, which must be named “nebmodule_init”.  The module-writer uses this function to initialize any private data structures and, principally, to subscribe to specific Nagios Events.  For example, a module might be only interested in Host and Service Checks and would subscribe to Nagios’ Host Check and Service Check “channels”.   The actual mechanism for subscribing to a Nagios Event Channel is that a module provides to Nagios the name of a subroutine defined within the module (known as a Call-Back routine.)  When the desired event occurs, Nagios will “call-back” the subscriber’s registered Call-Back routine with the details of the Service Check Event.  More details will be given on this shortly.

After initializing itself and subscribing to Nagios Event Channels of interest, the nebmodule_init then returns control back to Nagios.
It is important to know that any number of modules may be loaded and subscribe to the same events.  Nagios builds Subscriber Lists for each Nagios Event Channel.
When an event occurs within the Nagios Scheduler – let’s say that it is time to run a particular Service Check as an example – Nagios “publishes” that Service Check Event to it’s Service Check Event Channel; that is, it will walk the list of Service Check Channel subscribers and invoke each subscriber’s Call-Back Routine, one-at-a-time, with the Service Check Event details.  In the case of a Service Check Event, the Call-Back Routine will actually be invoked twice:
· Just before Nagios executes the Service Check and,

· Just after the Service Check’s results are processed by Nagios.

The Call-Back routine does with the Service Check information just about whatever it wants to do with it: store it in a database, trigger some external event, attempt to modify Nagios configuration or operation, etc. 
After processing the event, the Call-Back routine immediately returns control back to Nagios.

At any point during its operation, a Call-Back routine may unsubscribe it self (or another Call-Back routine) from a Nagios Event Channel.

Finally, when Nagios is getting ready to shutdown, it will invoke each NEB Module’s “de-initialization” routine.  Each NEB Module implements a routine called nebmodule_deinit, for this purpose.  The primary function of the Module’s nebmodule_deinit routine is to unsubscribe all of its currently-subscribed Call-Back routines, and then de-allocate or clean-up any internal resources that it has used.

Call Back Routines

The main purpose of Event Broker call-back routines is to allow an event broker module to register to receive notification of certain pre-defined events from Nagios, as they occur.  These events are called “call-back types” within Nagios.

Currently, there are 31 call-back types defined for which an NEB module can register:
	ID
	Name
	Description

	0
	NEBCALLBACK_RESERVED0
	Reserved for future use

	1
	NEBCALLBACK_RESERVED1
	Reserved for future use

	2
	NEBCALLBACK_RESERVED2
	Reserved for future use

	3
	NEBCALLBACK_RESERVED3
	Reserved for future use

	4
	NEBCALLBACK_RESERVED4
	Reserved for future use

	5
	NEBCALLBACK_RAW_DATA
	Not implemented

	6
	NEBCALLBACK_NEB_DATA
	Not implemented

	7
	NEBCALLBACK_PROCESS_DATA
	Information from the main nagios process.  Invoked when starting-up, shutting-down, restarting or abending.

	8
	NEBCALLBACK_TIMED_EVENT_DATA
	Timed Event

	9
	NEBCALLBACK_LOG_DATA
	Data being written to the Nagios logs

	10
	NEBCALLBACK_SYSTEM_COMMAND_DATA
	System Commands

	11
	NEBCALLBACK_EVENT_HANDLER_DATA
	Event Handlers

	12
	NEBCALLBACK_NOTIFICATION_DATA
	Notifications

	13
	NEBCALLBACK_SERVICE_CHECK_DATA
	Service Checks

	14
	NEBCALLBACK_HOST_CHECK_DATA
	Host Checks

	15
	NEBCALLBACK_COMMENT_DATA
	Comments

	16
	NEBCALLBACK_DOWNTIME_DATA
	Scheduled Downtime

	17
	NEBCALLBACK_FLAPPING_DATA
	Flapping

	18
	NEBCALLBACK_PROGRAM_STATUS_DATA
	Program Status Change

	19
	NEBCALLBACK_HOST_STATUS_DATA
	Host Status Change

	20
	NEBCALLBACK_SERVICE_STATUS_DATA
	Service Status Change

	21
	NEBCALLBACK_ADAPTIVE_PROGRAM_DATA
	Adaptive Program Change

	22
	NEBCALLBACK_ADAPTIVE_HOST_DATA
	Adaptive Host Change

	23
	NEBCALLBACK_ADAPTIVE_SERVICE_DATA
	Adaptive Service Change

	24
	NEBCALLBACK_EXTERNAL_COMMAND_DATA
	External Command Processing

	25
	NEBCALLBACK_AGGREGATED_STATUS_DATA
	Aggregated Status Dump

	26
	NEBCALLBACK_RETENTION_DATA
	Retention Data Loading and Saving

	27
	NEBCALLBACK_CONTACT_NOTIFICATION_DATA
	Contact Notification Change

	28
	NEBCALLBACK_CONTACT_NOTIFICATION_METHOD_DATA
	Contact Notification Method Change

	29
	NEBCALLBACK_ACKNOWLEDGEMENT_DATA
	Acknowledgements

	30
	NEBCALLBACK_STATE_CHANGE_DATA
	State Changes


Table of Call-Back Types

Each call back type is accompanied with an event-specific data structure.

For example, the NEBCALLBACK_SERVICE_CHECK_DATA call-back type is always accompanied by a nebstruct_service_check_data structure:

/* service check structure */

typedef struct nebstruct_service_check_struct{

int             type;

int             flags;

int             attr;

struct timeval  timestamp;

char            *host_name;

char            *service_description;

int             check_type;

int             current_attempt;

int             max_attempts;

int             state_type;

int             state;

int             timeout;

char            *command_name;

char            *command_args;

char            *command_line;

struct timeval  start_time;

struct timeval  end_time;

int             early_timeout;

double          execution_time;

double          latency;

int             return_code;

char            *output;

char            *perf_data;

}nebstruct_service_check_data;

So, when your NEB modules registers a call-back routine with Nagios to receive notifications about service check events, your call-back routine will receive two pieces of information:
1. The Call-Back Type (In this case NEBCALLBACK_SERVICE_CHECK_DATA) and,

2. A pointer to a nebstruct_service_check_data structure, containing some relevant details about the service check.

We’ll discuss this data structure in some detail, further on.  If you’re curious, Appendix A is a catalog of Call-Back Types and their respective  data structures.
The Nagios call-back mechanism is one-way, informational-only.  That is, there is currently no way for a call-back routine to alter the operation of Nagios through the call-back mechanism itself.  To alter the operation of Nagios, a call-back routine must alter global Nagios data structures while it has control from Nagios.  For example, to dynamically add a new service definition to Nagios, a call-back routine would invoke the “add_service()” helper function, among other things.
Since Nagios is currently a single, monolithic scheduling process with global control structures, a call-back routine must observe the following rules of “good citizenship”:

· Always return control back to Nagios.

· Spend as little time as possible in the call-back routine; i.e., return control to Nagios as quickly as possible.
· Be careful when modifying the global control structures.

· Where possible, always use the existing Nagios helper functions provided to interact with the global control structures.

Call-Back Registration (Subscribing to a Nagios Event Channel):
Call back routines are registered with Nagios usually within the module’s initialization function (nebmodule_init).  Here is an example initialization routine which registers for service checks:

static nebmodule *my_module_handle;


int nebmodule_init (int flags, char *args, nebmodule *handle) {


my_module_handle = handle;
// Save our module handle in our own global variable – we’ll need it later



// Register our service check event handler



neb_register_callback(NEBCALLBACK_SERVICE_CHECK_DATA, handle, 0, ServiceCheckHandler);



// Always return OK (zero) if your module initialized properly;
// Otherwise, your module will not be loaded by Nagios.



return OK;

}


// Our Service Check Call-Back Routine:

static int ServiceCheckHandler (int callback_type, void *data) {


// Cast the data structure to the appropriate data structure type



nebstruct_service_check_data *ds = (nebstruct_service_check_data *)data;


// Now we can access information about this service check that Nagios



// is about to execute.  For example:



//



// ds->host_name


// ds->command_name



// ds->command_args



// Etc…



//



// Appendix A contains a catalog of call-back-type-specific data structures.



// Always return OK (zero) for success.  Although the call-back return code



// is currently ignored by Nagios, it may be utilized in the future.



return OK;
}
There are a couple of things to notice about the above call back registration:

The same event handler may be registered for multiple events.  For example, we could have registered one event handler, say ObjectEventHandler, for both Host and Service checks, among others.  What makes this possible is the fact that the call back routine receives the call-back type as the first parameter.  This allows you to write a multi-event handler in the following manner:


// Our Multi-Event Call-Back Routine:

static int ObjectEventHandler (int callback_type, void *data) {



// Invoke call-back-type-specific handling for this event:



switch (callback_type) {




case NEBCALLBACK_SYSTEM_COMMAND_DATA:





handleSystemCommand((nebstruct_system_command_data *)data);





break;




case NEBCALLBACK_EVENT_HANDLER_DATA:





handleEventHandler((nebstruct_event_handler_data *)data);





break;




case NEBCALLBACK_NOTIFICATION_DATA:





handleNotification((nebstruct_notification_data *)data);





break;




case NEBCALLBACK_SERVICE_CHECK_DATA:





handleServiceCheck((nebstruct_service_check_data *)data);





break;




case NEBCALLBACK_HOST_CHECK_DATA:





handleHostCheck((nebstruct_host_check_data *)data);





break;



default:
// Unknown: Did we register for this?





write_to_logs_and_console(“ObjectEventHandler: Unhandled event”, NSLOG_RUNTIME_WARNING, TRUE);


}



// Always return OK (zero) for success.  Although the call-back return code



// is currently ignored by Nagios, it may be utilized in the future.



return OK;
}
When the nebmodule_init routine registers a call-back function (i.e., subscribes to a Nagios Event Channel), it uses the following registration function:

int neb_register_callback(int callback_type, void *mod_handle, int priority, int (*callback_func)(int,void *));

The parameters are:
	int callback_type;
	One of the thirty-one pre-defined callback types defined in the preceding Table of Call-Back Types.



	void *mod_handle;
	The module handle pointer that is passed into the nebmodule_init function by Nagios.



	int priority;
	An integer priority.  This interesting item allows module writers to prioritize the chain of callback routines registered for a given event.  That is, it lets you specify which callback routine gets called first, then second, third and so forth.  For example, a callback routine registered for service checks with a priority of 1 will be invoked before another callback routine with priority 2.

There is no min/max limitation on the range of priority values, except for the min/max size of an integer as defined by your OS (i.e., 32-bit ints vs. 64-bits ints).

Priorities can be positive, zero or negative.



	int (*callback_func)(int, void *);
	This is a pointer to your callback routine.  Notice that the callback routine is expected to return an integer result code; although it is currently neither examined nor used by Nagios.
Also note that the call-back routine should expect to receive two input values: an integer callback_type (as discussed above,) and a void pointer which must be cast to the relevant, callback-type-specific data structure.
Appendix A contains a catalog of call-back-type-specific data structures.



Also notice that the call-back routine is declared as “static”.  In C programming, this ensures that the call-back function name is not visible outside of the source file in which it is declared.  The reason for this is to avoid conflicts with function names within the “global” Nagios name space; i.e., it reduces global name space pollution and eliminates the possibility of a conflict between the name of your call-back functions and the names of any internal Nagios functions.

Call-Back Routine Invocation:
Earlier, we discussed the fact that when a call-back routine is invoked, it receives two parameters:

static int myCallBackroutine (int callback_type, void *data);

Since we’ve already discussed the meaning and values of the callback_type parameter, let’s now dig a little deeper into the call-back type-specific data structure that is passed into each call-back routine as the second parameter:

Although each data structure is unique to the call-back type it accompanies, there are several variables at the beginning of each data structure that are common to all of them.  Looking at a subsection of the nebstruct_service_check_data structure as an example, we see that these variables are:

/* service check structure */

typedef struct nebstruct_service_check_struct{

int             type;

int             flags;

int             attr;

struct timeval  timestamp;

(service-check-specific variables omitted…)

}nebstruct_service_check_data;

The meaning and use of these common variables is detailed in the following table:

	Variable Name
	Type
	Description

	type
	int
	This is arguably the most useful of the common variables.  The purpose of the type variable  is to give more detailed information about the call-back-type event.

For example, when your call-back routine is registered for and receives the NEBCALLBACK_SYSTEM_COMMAND_DATA call-back type, the “type” variable will tell you whether Nagios is about to execute the system command (type == NEBTYPE_SYSTEM_COMMAND_START) or has just completed execution of the system command (type == NEBTYPE_SYSTEM_COMMAND_END).  This is useful for perhaps dynamically modifying the command just before it is executed; or for receiving the results of the completed/timed-out command before Nagios acts upon them (although, with the way Nagios currently handles this call-back, there isn’t really much you can do to override the result status of the command without modifying the Nagios sources directly.)
As a further example, the NEBCALLBACK_DOWNTIME_DATA call-back type will set this type variable to let you know if the scheduled downtime is being added, deleted, loaded, started or stopped.

	flags
	int
	Currently, the flags variable is only used in conjunction with the NEBCALLBACK_PROCESS_DATA call-back type, usually to let you know whether a shutdown/restart was Nagios or User initiated.

All other call-back types currently set this value to NEBFLAG_NONE (zero).

	attr
	int
	The attr variable is used to provide further information about the event type specified in the “type” variable.

It is currently only used in conjunction with three call-back types:
1. NEBCALLBACK_PROCESS_DATA – to tell you whether a shutdown/restart was normal or abnormal.

2. NEBCALLBACK_FLAPPING_DATA – to tell you whether flapping stopped normally or was disabled.

3. NEBCALLBACK_DOWNTIME_DATA – to tell you whether scheduled downtime stopped normally or was disabled.

All other call-back types currently set this value to NEBATTR_NONE (zero).

	struct timeval
	timestamp
	This is the time stamp that Nagios places on the event just prior to passing it to the call-back routines.   It represents the current time in “UNIX  time”.

The timeval structure looks like:

struct timeval {

               long tv_sec;        /* seconds */

               long tv_usec;  /* microseconds */

       };

and gives the number of seconds and microseconds since the Epoch.


As an example of how one might use these common variables, let’s re-visit our original service check call-back routine:

// Our Service Check Call-Back Routine, Second Version:

static int ServiceCheckHandler (int callback_type, void *data) {



// Cast the data structure to the appropriate data structure type



nebstruct_service_check_data *ds = (nebstruct_service_check_data *)data;



char logMsg[1024];
// Used for formatting log messages



// You can use the following Nagios global variable to identify



// how many active service checks are currently running.



extern int      currently_running_service_checks;


// Many of the members of the nebstruct_service_check_data structure are 


// simply copied from Nagios’ internal service structure.  However, there

// is other useful service information which is *not* copied.  So, to

// obtain direct access to this structure, we do the following:


service *svc;


if ((svc = find_service (ds->host_name, ds->service_description)) == NULL) {




// ERROR – This should never happen here: The service was not found…




sprintf(logMsg, “ServiceCheckHandler: Could not find service %s for host %s”,

ds->host_name, ds->service_description);




write_to_logs_and_console(logMsg, NSLOG_RUNTIME_WARNING, TRUE);




return OK;



}



// Now, we can dynamically examine (or twiddle with,) the service definition.



//



// For example, let’s see if this service check is accepting passive checks:



if (svc->accept_passive_service_checks == FALSE) {




// Nope, so let’s change it.



svc->accept_passive_service_checks = TRUE;


}



// Examples of other interesting items in the internal service structure:



//



// svc->next_check – UNIX timestamp of when this service is next scheduled to execute



// svc->checks_enabled – TRUE/FALSE



// svc->check_interval



// svc->latency – service latency (represented as a “double” variable)


// Now, use the “type” common variable to see if we are being notified before or after

// the service check execution:



switch (ds->type) {



case NEBTYPE_SERVICECHECK_INITIATE:





// Now let’s do something naughty and change the service check command





// just BEFORE Nagios executes it.  Note that at this point, Nagios has





// already substituted-in all of the service check arguments.





//

// WARNING: The command_line buffer has a max size of MAX_COMMAND_BUFFER
// (currently 8,192) bytes, so be sure not to overrun it!

//

// CAVEAT: Since multiple call-back routines may be registered for this

// event, all call-back routines “down-stream” from us will now see this

// modified command (instead of the original.)  Furthermore, any one of

// these down-stream call-back routines can also modify the command line

// string, so unless you know for sure what all of your loaded NEB modules

// are doing with this event, your command line changes may not survive!





strncpy(ds->command_line, “/usr/local/nagios/libexec/naughty.pl”, MAX_COMMAND_BUFFER);




ds->command_line[MAX_COMMAND_BUFFER-1] = ‘\0’;
  // Null-terminate for safety





break;




case NEBTYPE_SERVICECHECK_PROCESSED:





// The service check command has been executed and its result has





// been retrieved from the child process.  No we can examine it.





//





// However, there is nothing we can do at this point, in this call-

// back routine, to override the result that Nagios will use in

// it’s processing (unless we modify the Nagios source file checks.c)
//

//  The following example code does nothing useful, but provides some

// examples of using the service data structure elements.

// See if our current state is soft or hard.

if (ds->state_type == SOFT_STATE)


// do something about a soft state…

else


// we’re in a hard state

// Examine our current service state

switch (ds->state) {


case STATE_CRITICAL:



// handle critical state



break;


case STATE_WARNING:



// handle warning state



break;


case STATE_UNKNOWN:



// handle unknown state



break;


case STATE_OK:



// Everything’s okie-dokie



break;


default:

// Should never happen…
}

// See if there’s been a state change:
//

// NOTE: The data structure supplied by the NEB only

// contains the current service state.  To compare

// against the previous service state, we have to appeal

// to Nagios’ internal service structure (which we

// located previously in this code example.)
if (ds->state != svc->last_state) {


// We’ve had a state change!

}





break;




case NEBTYPE_SERVICECHECK_RAW_START:




// This has not been implemented as of Nagios 2.3





break;




case NEBTYPE_SERVICECHECK_RAW_END:




// This has not been implemented as of Nagios 2.3





break;




default:




// ERROR – We’ve received an unknown (to us) event type




sprintf(logMsg, “ServiceCheckHandler: Unknown event type for service %s for host %s”,

ds->host_name, ds->service_description);





write_to_logs_and_console(logMsg, NSLOG_RUNTIME_WARNING, TRUE);





return OK;



}


// Always return OK (zero) for success.  Although the call-back return code



// is currently ignored by Nagios, it may be utilized in the future.



return OK;
}
Call-Back De-Registration (Unsubscribing to a Nagios Event Channel):
When the nebmodule_deinit routine de-registers a call-back function (i.e., unsubscribes to a Nagios Event Channel), it uses the following de-registration function:

int neb_deregister_callback(int callback_type, int (*callback_func)(int,void *));

The parameters are:

	int callback_type;
	One of the thirty-one pre-defined callback types defined in the preceding Table of Call-Back Types.



	int (*callback_func)(int, void *);
	This is a pointer to your callback routine.  Notice that the callback routine is expected to return an integer result code; although it is currently neither examined nor used by Nagios.

Also note that the call-back routine should expect to receive two input values: an integer callback_type (as discussed above,) and a void pointer which must be cast to the relevant, callback-type-specific data structure.

Appendix A contains a catalog of call-back-type-specific data structures.





As noted earlier, call-back routines can also be registered and de-registered at any time within a call-back routine in your module.

The Module Information Function

There is one other NEB Module function that has not yet been discussed.  It is used to register information about your module with Nagios:


int neb_set_module_info(void *handle, int type, char *data);

The parameters are:

	void *mod_handle;
	The module handle pointer that you received from Nagios in your nebmodule_init function.



	int type;
	This integer specifies which (of the six possible) pieces of module information you wish to set:  Title, Author, Copyright, Version, License, Description.  The table below gives both the integer and mnemonic representations you can use for this parameter.



	char *data;
	This is a string containing the information you wish Nagios to associate with your module.




	Index
	Mnemonic

	0
	NEBMODULE_MODINFO_TITLE

	1
	NEBMODULE_MODINFO_AUTHOR

	2
	NEBMODULE_MODINFO_COPYRIGHT

	3
	NEBMODULE_MODINFO_VERSION

	4
	NEBMODULE_MODINFO_LICENSE

	5
	NEBMODULE_MODINFO_DESC


Table of Module Information Types
It would seem that a module writer would use this function in the nebmodule_init routine.  Here are some examples of its use:



neb_set_module_info(my_module_handle, NEBMODULE_MODINFO_TITLE, “Demo NEB Module”);



neb_set_module_info(my_module_handle, NEBMODULE_MODINFO_AUTHOR, “Joe Module-Writer”);



neb_set_module_info(my_module_handle, NEBMODULE_MODINFO_COPYRIGHT, “© 2006 JMW & Friends”);



neb_set_module_info(my_module_handle, NEBMODULE_MODINFO_VERSION, “1.0.0”);



neb_set_module_info(my_module_handle, NEBMODULE_MODINFO_LICENSE, “GPL Version 2”);



neb_set_module_info(my_module_handle, NEBMODULE_MODINFO_DESC, “A demonstration module”);

Currently, there appears to be no API function to enumerate the list of loaded modules nor is there a function to look-up a module by information type.
However, the list of loaded modules is also global so, by way of example, we can perform the enumeration function in the following manner:

static int neb_enum_modules (void) {



extern nebmodule *neb_module_list;
// The linked-list of NEB modules
nebmodule *temp_module;


// Temp pointer

int nebmod_count = 0;


// Count the number of active modules



char logMsg[1024];
// Used for formatting log messages



// Traverse the NEB Module List

for(temp_module=neb_module_list;temp_module;temp_module=temp_module->next) {

// Skip modules that are not loaded

if(temp_module->is_currently_loaded==FALSE)

continue;

// Skip modules that do not have a valid handle

if(temp_module->module_handle==NULL)

continue;




// Increment the active module counter




nebmod_count++;




// Log the module title - *if* it’s been set



if (temp_module->info[NEBMODULE_MODINFO_TITLE] != NULL)




sprintf(logMsg, “Found module: %s”, temp_module->info[NEBMODULE_MODINFO_TITLE]);




else





sprintf(logMsg, “Found module: NoTitle #%d”,nebmod_count);




write_to_logs_and_console(logMsg, NSLOG_INFO_MESSAGE, TRUE);



}



return nebmod_count;
// Return the number of active modules


}

Likewise, we can implement a module lookup function in the following manner:
static nebmodule *neb_find_module (int type, char *data) {



extern nebmodule *neb_module_list;
// The linked-list of NEB modules
nebmodule *temp_module;


// Temp pointer



// Validate our parameters



if (type < 0 || type > NEBMODULE_MODINFO_NUMITEMS || !data) {




write_to_logs_and_console(“neb_find_module: Invalid type or data parameter”, NSLOG_RUNTIME_WARNING, TRUE);




return OK;



}



// Traverse the NEB Module List

for(temp_module=neb_module_list;temp_module;temp_module=temp_module->next) {

// Skip modules that are not loaded

if(temp_module->is_currently_loaded==FALSE)

continue;

// Skip modules that do not have a valid handle

if(temp_module->module_handle==NULL)

continue;




// Compare the desired module information type



if (temp_module->info[type] != NULL && !strcmp(temp_module->info[type], data))




break;

// Success: We have a match


}



return temp_module;
// Return a pointer to the module, if found; NULL otherwise

}

NEB API Summary
In summary, the current NEB Module writer’s API “officially” consists of the following five functions:

	NEB Function
	Purpose

	nemodule_init
	Your Module’s Initialization Routine

	nebmodule_deinit
	Your Module’s De-Initialization Routine

	neb_register_callback
	Used to subscribe to Nagios Event Channels

	neb_deregister_callback
	Used to Unsubscribe to Nagios Event Channels

	neb_set_module_info
	Used to register information about your module with Nagios


I say “officially” since, unofficially, the module writer is free to invoke any of the internal Nagios routines to examine, modify or otherwise interact with the Nagios engine. 
Obviously, extreme care should be taken when utilizing any of the internal Nagios functions or directly accessing global Nagios data structures since, without a reasonable knowledge of Nagios’ inner-workings,  bad-things can happen with regard to the stability and integrity of the Nagios engine.

In order to present a view of the available Nagios global data structures and internal functions, I have created Appendix B in this document; which serves to catalog and discuss both the global Nagios data structures and the internal “Helper Routines” that operate on them.

Appendix A: Catalog of NEB Call-Back Types and their Associated Data Structures
Purpose

This table presents a catalog of each of the NEB Call-Back Types (Nagios Event Channels) and any relevant information associated with them.

Note that, when describing the associated data structure for a Call-Back Type, the common variables (i.e., common to all call-back data structures,) are not explained, since they have the same purpose regardless of Call-Back Type:
	Variable Name
	Type
	Description

	type
	int
	This is arguably the most useful of the common variables.  The purpose of the type variable  is to give more detailed information about the call-back-type event.

For example, when your call-back routine is registered for and receives the NEBCALLBACK_SYSTEM_COMMAND_DATA call-back type, the “type” variable will tell you whether Nagios is about to execute the system command (type == NEBTYPE_SYSTEM_COMMAND_START) or has just completed execution of the system command (type == NEBTYPE_SYSTEM_COMMAND_END).  This is useful for perhaps dynamically modifying the command just before it is executed; or for receiving the results of the completed/timed-out command before Nagios acts upon them (although, with the way Nagios currently handles this call-back, there isn’t really much you can do to override the result status of the command without modifying the Nagios sources directly.)

As a further example, the NEBCALLBACK_DOWNTIME_DATA call-back type will set this type variable to let you know if the scheduled downtime is being added, deleted, loaded, started or stopped.

	flags
	int
	Currently, the flags variable is only used in conjunction with the NEBCALLBACK_PROCESS_DATA call-back type, usually to let you know whether a shutdown/restart was Nagios or User initiated.

All other call-back types currently set this value to NEBFLAG_NONE (zero).

	attr
	int
	The attr variable is used to provide further information about the event type specified in the “type” variable.

It is currently only used in conjunction with three call-back types:

4. NEBCALLBACK_PROCESS_DATA – to tell you whether a shutdown/restart was normal or abnormal.

5. NEBCALLBACK_FLAPPING_DATA – to tell you whether flapping stopped normally or was disabled.

6. NEBCALLBACK_DOWNTIME_DATA – to tell you whether scheduled downtime stopped normally or was disabled.

All other call-back types currently set this value to NEBATTR_NONE (zero).

	struct timeval
	timestamp
	This is the time stamp that Nagios places on the event just prior to passing it to the call-back routines.   It represents the current time in “UNIX  time”.

The timeval structure looks like:

struct timeval {

               long tv_sec;        /* seconds */

               long tv_usec;  /* microseconds */

       };

and gives the number of seconds and microseconds since the Epoch.


A.0
NEBCALLBACK_RESERVED0
Description

This Call-Back type is reserved for future use.

Data Structure

N/A

Invocation

N/A
Relevant Internal Structures

N/A

Examples
N/A

A.1
NEBCALLBACK_RESERVED1
Description

This Call-Back type is reserved for future use.

Data Structure

N/A

Invocation

N/A

Relevant Internal Structures

N/A

Examples
N/A

A.2
NEBCALLBACK_RESERVED2
Description

This Call-Back type is reserved for future use.

Data Structure

N/A

Invocation

N/A
Relevant Internal Structures

N/A

Examples
N/A

A.3
NEBCALLBACK_RESERVED3
Description

This Call-Back type is reserved for future use.

Data Structure

N/A

Invocation

N/A
Relevant Internal Structures

N/A

Examples
N/A

A.4
NEBCALLBACK_RESERVED4
Description

This Call-Back type is reserved for future use.

Data Structure

N/A

Invocation

N/A
Relevant Internal Structures

N/A

Examples
N/A

A.5
NEBCALLBACK_RAW_DATA
Description

This Call-Back type is not implemented.

Data Structure

N/A

Invocation

N/A
Relevant Internal Structures

N/A

Examples
N/A

A.6
NEBCALLBACK_NEB_DATA
Description

This Call-Back type is not implemented.

Data Structure

N/A

Invocation

N/A
Relevant Internal Structures

N/A

Examples
N/A

A.7
NEBCALLBACK_PROCESS_DATA
Description

This Call-Back Type delivers events relevant to the operation of the main Nagios process (e.g., startup, initialization, shutdown, abend, etc.)

Data Structure

/* process data structure */

typedef struct nebstruct_process_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        }nebstruct_process_data;

Invocation
Note:  The following Event Types have been arranged in the chronological order in which they will be delivered to your Call-Back routine during a “normal” start-up (i.e., no abends.)

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_PROCESS_PRELAUNCH
	NEBFLAG_NONE
	NEBATTR_NONE
	Called prior to reading/parsing the object configuration files.

	NEBTYPE_PROCESS_START
	NEBFLAG_NONE
	NEBATTR_NONE
	Called after reading all configuration objects and after passing the pre-flight check.

Called before entering daemon mode, opening command pipe, starting worker threads, initializing the status, comments, downtime, performance and initial host/service state structures.

	NEBTYPE_PROCESS_DAEMONIZE
	NEBFLAG_NONE
	NEBATTR_NONE
	Called right after Nagios successfully “daemonizes”; that is, detaches from the controlling terminal and is running in the background.

	NEBTYPE_PROCESS_EVENTLOOPSTART
	NEBFLAG_NONE
	NEBATTR_NONE
	Called immediately prior to entering the main event execution loop

	NEBTYPE_PROCESS_EVENTLOOPEND
	NEBFLAG_NONE
	NEBATTR_NONE
	Called immediately after exiting the main event execution loop (due to either a shutdown or restart.)

	NEBTYPE_PROCESS_SHUTDOWN
	NEBFLAG_PROCESS_INITIATED
NEBFLAG_USER_INITIATED
	NEBATTR_SHUTDOWN_NORMAL
NEBATTR_SHUTDOWN_ABNORMAL
	Invoked if exiting due to either a process initiated (abnormal) or a user-initiated (normal) shutdown.

	NEBTYPE_PROCESS_RESTART
	NEBFLAG_USER_INITIATED
	NEBATTR_RESTART_NORMAL
	Invoked if exiting due to a user-initiated restart. Always invoked after NEBTYPE_PROCESS_ EVENTLOOPEND.


Relevant Internal Structures

N/A

Examples
None.

A.8
NEBCALLBACK_TIMED_EVENT_DATA

Description

Notifies a call-back routine of timed-event events.
Since Nagios is, at its core, one big timed-event-driven loop, all actions taken by Nagios are considered “timed events”.  Therefore, a call-back routine registered for this Call-Back Type will be invoked quite often.
Data Structure

/* timed event data structure */

typedef struct nebstruct_timed_event_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             event_type;

        int             recurring;

        time_t          run_time;

        void            *event_data;

        }nebstruct_timed_event_data;

	Variable Name
	Type
	Description

	event_type
	int
	Defines the type of event being added, deleted, executed, etc.  See the “Table of event_types” below.

	recurring
	int
	Boolean (TRUE or FALSE).  Determines whether the event is automatically re-scheduled by Nagios after it is executed.

	run_time
	time_t
	The time at which this event is next scheduled to run (in UNIX time).

	event_data
	void *
	Point to an event-specific data that the event will use when it executes.  See the “Table of event_types” below.


	Event ID
	Mnemonic
	Description
	Event_Data

	0
	EVENT_SERVICE_CHECK
	active service check
	Pointer to internal Nagios service structure

	1
	EVENT_COMMAND_CHECK
	external command check
	None

	2
	EVENT_LOG_ROTATION
	log file rotation
	None

	3
	EVENT_PROGRAM_SHUTDOWN
	program shutdown
	None

	4
	EVENT_PROGRAM_RESTART
	program restart
	None

	5
	EVENT_SERVICE_REAPER
	reaps results from service checks
	None

	6
	EVENT_ORPHAN_CHECK
	checks for orphaned service checks
	None

	7
	EVENT_RETENTION_SAVE
	save (dump) retention data
	None

	8
	EVENT_STATUS_SAVE
	save (dump) status data
	None

	9
	EVENT_SCHEDULED_DOWNTIME
	scheduled host or service downtime
	Pointer to internal Nagios downtime structure

	10
	EVENT_SFRESHNESS_CHECK
	checks service result "freshness"
	None

	11
	EVENT_EXPIRE_DOWNTIME
	checks for (and removes) expired scheduled downtime
	None

	12
	EVENT_HOST_CHECK
	active host check
	Pointer to internal Nagios host structure

	13
	EVENT_HFRESHNESS_CHECK
	checks host result "freshness"
	None

	14
	EVENT_RESCHEDULE_CHECKS
	adjust scheduling of host and service checks
	None

	15
	EVENT_EXPIRE_COMMENT
	removes expired comments
	Pointer to a newly assigned comment_id (unsigned long)

	98
	EVENT_SLEEP
	asynchronous sleep event that occurs when event queues are empty
	Pointer to a “struct timespec” called “delay”, which is the amount of time to sleep.

	99
	EVENT_USER_FUNCTION
	USER-defined function (modules)
	User defined (i.e., whatever you want.)


Table of event_types

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_TIMEDEVENT_ADD
	NEBFLAG_NONE
	NEBATTR_NONE
	A timed event has just been added to one of the global event lists (high priority or low priority)

	NEBTYPE_TIMEDEVENT_REMOVE
	NEBFLAG_NONE
	NEBATTR_NONE
	A timed event has been removed from one of the global event lists

	NEBTYPE_TIMEDEVENT_EXECUTE
	NEBFLAG_NONE
	NEBATTR_NONE
	A timed event is just about to execute.

	NEBTYPE_TIMEDEVENT_DELAY
	NEBFLAG_NONE
	NEBATTR_NONE
	Not implemented

	NEBTYPE_TIMEDEVENT_SKIP
	NEBFLAG_NONE
	NEBATTR_NONE
	Not implemented

	NEBTYPE_TIMEDEVENT_SLEEP
	NEBFLAG_NONE
	NEBATTR_NONE
	The Nagios scheduler is about to go into a timed sleep due to idleness.


Relevant Internal Structures

Nagios keeps two timed event lists: a high priority list and a low priority list.  They are defined globally as:

timed_event *event_list_low;

timed_event *event_list_high;

A timed_event structure is defined as:

typedef struct timed_event_struct{

        int event_type;

        time_t run_time;

        int recurring;

        unsigned long event_interval;

        int compensate_for_time_change;

        void *timing_func;

        void *event_data;

        void *event_args;

        struct timed_event_struct *next;

        }timed_event;

Examples

Scheduling an event on one of these two lists is accomplished via the following internal function:

int schedule_new_event(int event_type, int high_priority, time_t run_time, int recurring, unsigned long event_interval, void *timing_func, int compensate_for_time_change, void *event_data, void *event_args);

Removing a scheduled event is accomplished via the following internal function:

int deschedule_event(int event_type, int high_priority, void *event_data, void *event_args)

A.9
NEBCALLBACK_LOG_DATA
Description


Provides a copy of log entries to call-back routines.  Note that this call-back is invoked just after the entry has been written to the Nagios log file.
Data Structure

/* log data structure */

typedef struct nebstruct_log_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        time_t          entry_time;

        int             data_type;

        char            *data;

        }nebstruct_log_data;

	Variable Name
	Type
	Description

	entry_time
	time_t
	Time stamp of entry in the log file (in UNIX time)

	data_type
	int
	Used to classify the source and/or severity of the log entry.  See the Log Data Type table below.
Notice that the log data types are defined as bit fields.  This allows Nagios to filter which types of messages get written to the Nagios log file.  Usually, the data_type variable will hold just one of the defined log data types; but it is possible that you may see multiple log data type values bitwise OR-ed together (if there’s an error from the service check result worker thread.)

	data
	char *
	Message string that was written to the log file





Table of Log Data Types

	ID
	Mnemonic

	1
	NSLOG_RUNTIME_ERROR

	2
	NSLOG_RUNTIME_WARNING

	4
	NSLOG_VERIFICATION_ERROR

	8
	NSLOG_VERIFICATION_WARNING

	16
	NSLOG_CONFIG_ERROR

	32
	NSLOG_CONFIG_WARNING

	64
	NSLOG_PROCESS_INFO

	128
	NSLOG_EVENT_HANDLER

	256
	Unused

	512
	NSLOG_EXTERNAL_COMMAND

	1024
	NSLOG_HOST_UP

	2048
	NSLOG_HOST_DOWN

	4096
	NSLOG_HOST_UNREACHABLE

	8192
	NSLOG_SERVICE_OK

	16384
	NSLOG_SERVICE_UNKNOWN

	32768
	NSLOG_SERVICE_WARNING

	65536
	NSLOG_SERVICE_CRITICAL

	131072
	NSLOG_PASSIVE_CHECK

	262144
	NSLOG_INFO_MESSAGE

	524288
	NSLOG_HOST_NOTIFICATION

	1048576
	NSLOG_SERVICE_NOTIFICATION


Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_LOG_DATA
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_LOG_ROTATION
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

	Global Structure
	Type
	Description

	extern char *log_file
	string
	Name of the Nagios log file

	extern char  *log_archive_path
	string
	Path to log archive directory

	extern int      use_syslog
	boolean
	Enable/Disables writing log entries to the syslog

	extern int      log_service_retries
	boolean
	Enables/Disable logging soft service states

	extern int      log_initial_states
	boolean
	Enables/Disables logging initial host/service states

	extern unsigned long logging_options
	bit-field
	A filter which defines which log data types will be written to the Nagios log file

	extern unsigned long  syslog_option
	bit-field
	A filter which defines which log data types will be written to the syslog file

	extern time_t   last_log_rotation
	time
	Time of last log file rotation

	extern int      log_rotation_method
	enum
	Log rotation method – See the Log Rotation Method table below.


Log Rotation Method Table
	ID
	Mnemonic

	0
	LOG_ROTATION_NONE

	1
	LOG_ROTATION_HOURLY

	2
	LOG_ROTATION_DAILY

	3
	LOG_ROTATION_WEEKLY

	4
	LOG_ROTATION_MONTHLY


Examples
None.

A.10
NEBCALLBACK_SYSTEM_COMMAND_DATA
Description

Notifies a call-back routine both before and after each system command is executed.
A system command is an external command that is run by Nagios to satisfy one of the following events:
· Executing an obsessive service check command

· Executing an obsessive host check command

· Executing the global service event handler

· Executing a service event handler

· Executing the global host event handler

· Executing a host event handler

· Executing a service contact notification command

· Executing a host contact notification command

Data Structure

/* system command structure */

typedef struct nebstruct_system_command_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        struct timeval  start_time;

        struct timeval  end_time;

        int             timeout;

        char            *command_line;

        int             early_timeout;

        double          execution_time;

        int             return_code;

        char            *output;

        }nebstruct_system_command_data;

	Variable Name
	Type
	Description

	start_time
	timeval
	Time that the command started (in UNIX time)

	end_time
	timeval
	Time that the command ended (in UNIX time).  Only valid for event_type NEBTYPE_SYSTEM_COMMAND_END.

	timeout
	int
	Maximum number of seconds to allow for this command to execute.

	command_line
	char *
	The command to be executed.

	early_timeout
	int
	Boolean. Set to TRUE if there was a critical return code and no output AND the command time exceeded the timeout thresholds. Only valid for event_type NEBTYPE_SYSTEM_COMMAND_END.

	execution_time
	double
	Elapsed execution in milliseconds.  Only valid for event_type NEBTYPE_SYSTEM_COMMAND_END.

	return_code
	int
	Return Code: STATE_OK (0), STATE_WARNING (1), STATE_CRITICAL (2) or STATE_UNKNOWN (3).  Only valid for event_type NEBTYPE_SYSTEM_COMMAND_END.

	output
	char *
	Command output string.   Only valid for event_type NEBTYPE_SYSTEM_COMMAND_END.


Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_SYSTEM_COMMAND_START
	NEBFLAG_NONE
	NEBATTR_NONE
	Invoked just prior to starting a new process (fork) to execute a system command.

	NEBTYPE_SYSTEM_COMMAND_END
	NEBFLAG_NONE
	NEBATTR_NONE
	Invoked after the systems command has completed and its results collected.


Relevant Internal Structures

None.
Examples
System commands are executed via the internal function:
int my_system(char *cmd,int timeout,int *early_timeout,double *exectime,char *output,int output_length);

Where:

	Variable Name
	Type
	Description

	cmd
	char *
	[INPUT] Fully-qualified command to execute.

	timeout
	int
	[INPUT] Maximum number of seconds to allow for this command to execute.

	early_timeout
	int *
	[OUTPUT] Boolean. Set to TRUE if there was a critical return code and no output AND the command time exceeded the timeout thresholds.

	exectime
	double *
	[OUTPUT] Elapsed execution in milliseconds.

	output
	char *
	[OUTPUT] Command output string.  Note: This is expected to be a pre-allocated string buffer.

	output_length
	int
	[INPUT] Pre-allocated size of the output buffer in bytes.


The return value is the result code from the executed command and is one of:  STATE_OK (0), STATE_WARNING (1), STATE_CRITICAL (2) or STATE_UNKNOWN (3).

A.11
NEBCALLBACK_EVENT_HANDLER_DATA
Description

Notifies a call-back routine before and after an event handler is executed.

Nagios invokes this call-back for the following four event handlers:

· Global Service Event Handler

· Service Event Handler

· Global Host Event Handler

· Host Event Handler

Data Structure

/* event handler structure */

typedef struct nebstruct_event_handler_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             eventhandler_type;

        char            *host_name;

        char            *service_description;

        int             state_type;

        int             state;

        int             timeout;

        char            *command_name;

        char            *command_args;

        char            *command_line;

        struct timeval  start_time;

        struct timeval  end_time;

        int             early_timeout;

        double          execution_time;

        int             return_code;

        char            *output;

        }nebstruct_event_handler_data;

	Variable Name
	Type
	Description

	eventhandler_type
	int
	Identifies which of the four types of event handler.  See the Event Handler Type table below.

	host_name
	char *
	Host name

	service_description
	char *
	Service description

	state_type
	int
	Host/Service State Type:  SOFT_STATE (0) or HARD_STATE (1)

	state
	int
	Host/Service State.  See the Host/Service State table below.

	timeout
	int
	Maximum number of seconds to allow for this command to execute.

	command_name
	char *
	The command’s name.

	command_args
	char *
	The command’s arguments (separated by exclamation points)

	command_line
	char *
	The full, processed command line (i.e., after parameter substitution)  Only valid for event_type NEBTYPE_EVENTHANDLER_END.

	start_time
	timeval
	Time that the command started (in UNIX time)

	end_time
	timeval
	Time that the command ended (in UNIX time).  Only valid for event_type NEBTYPE_EVENTHANDLER_END.

	early_timeout
	int
	Boolean. Set to TRUE if there was a critical return code and no output AND the command time exceeded the timeout thresholds. Only valid for event_type NEBTYPE_EVENTHANDLER_END.

	execution_time
	double
	Elapsed execution in milliseconds.  Only valid for event_type NEBTYPE_EVENTHANDLER_END.

	return_code
	int
	Return Code: STATE_OK (0), STATE_WARNING (1), STATE_CRITICAL (2) or STATE_UNKNOWN (3).  Only valid for event_type NEBTYPE_EVENTHANDLER_END.

	output
	char *
	Command output string.   Only valid for event_type NEBTYPE_EVENTHANDLER_END.


Event Handler Type Table

	ID
	Mnemonic

	0
	HOST_EVENTHANDLER

	1
	SERVICE_EVENTHANDLER

	2
	GLOBAL_HOST_EVENTHANDLER

	3
	GLOBAL_SERVICE_EVENTHANDLER




Host State Table

	ID
	Mnemonic

	0
	HOST_UP

	1
	HOST_DOWN

	2
	HOST_UNREACHABLE


Service State Table

	ID
	Mnemonic

	0
	STATE_OK

	1
	STATE_WARNING

	2
	STATE_CRITICAL

	3
	STATE_UNKNOWN


Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_EVENTHANDLER_START
	NEBFLAG_NONE
	NEBATTR_NONE
	An event handler is about to be executed.

	NEBTYPE_EVENTHANDLER_END
	NEBFLAG_NONE
	NEBATTR_NONE
	An event handler has completed execution


Relevant Internal Structures

	Global Structure
	Type
	Description

	extern int enable_event_handlers
	boolean
	Enable/Disable event handlers

	extern int log_event_handlers
	boolean
	Enable/Disable logging of event handler events

	extern int event_handler_timeout
	value
	Maximum number of seconds to allow for event handlers to execute.

	extern char            *global_host_event_handler
	string
	Global host event handler command string.

	extern char            *global_service_event_handler
	string
	Global service event handler command string.


Examples
None.

A.12
NEBCALLBACK_NOTIFICATION_DATA
Description

Data Structure

/* notification data structure */

typedef struct nebstruct_notification_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             notification_type;

        struct timeval  start_time;

        struct timeval  end_time;

        char            *host_name;

        char            *service_description;

        int             reason_type;

        int             state;

        char            *output;

        char            *ack_author;

        char            *ack_data;

        int             escalated;

        int             contacts_notified;

        }nebstruct_notification_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_NOTIFICATION_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_NOTIFICATION_END
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_CONTACTNOTIFICATION_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_CONTACTNOTIFICATION_END
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_CONTACTNOTIFICATIONMETHOD_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_CONTACTNOTIFICATIONMETHOD_END
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.13
NEBCALLBACK_SERVICE_CHECK_DATA
Description

Data Structure

/* service check structure */

typedef struct nebstruct_service_check_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        char            *host_name;

        char            *service_description;

        int             check_type;

        int             current_attempt;

        int             max_attempts;

        int             state_type;

        int             state;

        int             timeout;

        char            *command_name;

        char            *command_args;

        char            *command_line;

        struct timeval  start_time;

        struct timeval  end_time;

        int             early_timeout;

        double          execution_time;

        double          latency;

        int             return_code;

        char            *output;

        char            *perf_data;

        }nebstruct_service_check_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_SERVICECHECK_INITIATE
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_SERVICECHECK_PROCESSED
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_SERVICECHECK_RAW_START
	NEBFLAG_NONE
	NEBATTR_NONE
	Not implemented.

	NEBTYPE_SERVICECHECK_RAW_END
	NEBFLAG_NONE
	NEBATTR_NONE
	Not implemented


Relevant Internal Structures

Examples
A.14
NEBCALLBACK_HOST_CHECK_DATA
Description

Data Structure

/* host check structure */

typedef struct nebstruct_host_check_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        char            *host_name;

        int             current_attempt;

        int             check_type;

        int             max_attempts;

        int             state_type;

        int             state;

        int             timeout;

        char            *command_name;

        char            *command_args;

        char            *command_line;

        struct timeval  start_time;

        struct timeval  end_time;

        int             early_timeout;

        double          execution_time;

        double          latency;

        int             return_code;

        char            *output;

        char            *perf_data;

        }nebstruct_host_check_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_HOSTCHECK_INITIATE
	NEBFLAG_NONE
	NEBATTR_NONE
	A check of the route to the host has been initiated

	NEBTYPE_HOSTCHECK_PROCESSED
	NEBFLAG_NONE
	NEBATTR_NONE
	The processed/final result of a host check

	NEBTYPE_HOSTCHECK_RAW_START
	NEBFLAG_NONE
	NEBATTR_NONE
	The start of a "raw" host check

	NEBTYPE_HOSTCHECK_RAW_END
	NEBFLAG_NONE
	NEBATTR_NONE
	A finished "raw" host check.


Relevant Internal Structures

Examples
A.15
NEBCALLBACK_COMMENT_DATA
Description

Data Structure

/* comment data structure */

typedef struct nebstruct_comment_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             comment_type;

        char            *host_name;

        char            *service_description;

        time_t          entry_time;

        char            *author_name;

        char            *comment_data;

        int             persistent;

        int             source;

        int             entry_type;

        int             expires;

        time_t          expire_time;

        unsigned long   comment_id;

        }nebstruct_comment_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_COMMENT_ADD
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_COMMENT_DELETE
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_COMMENT_LOAD
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.16
NEBCALLBACK_DOWNTIME_DATA
Description

Data Structure

/* downtime data structure */

typedef struct nebstruct_downtime_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             downtime_type;

        char            *host_name;

        char            *service_description;

        time_t          entry_time;

        char            *author_name;

        char            *comment_data;

        time_t          start_time;

        time_t          end_time;

        int             fixed;

        unsigned long   duration;

        unsigned long   triggered_by;

        unsigned long   downtime_id;

        }nebstruct_downtime_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_DOWNTIME_ADD
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_DOWNTIME_DELETE
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_DOWNTIME_LOAD
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_DOWNTIME_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_DOWNTIME_STOP
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.17
NEBCALLBACK_FLAPPING_DATA
Description

Data Structure

/* flapping data structure */

typedef struct nebstruct_flapping_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             flapping_type;

        char            *host_name;

        char            *service_description;

        double          percent_change;

        double          high_threshold;

        double          low_threshold;

        unsigned long   comment_id;

        }nebstruct_flapping_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_FLAPPING_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_FLAPPING_STOP
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.18
NEBCALLBACK_PROGRAM_STATUS_DATA
Description

Data Structure

/* program status structure */

typedef struct nebstruct_program_status_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        time_t          program_start;

        int             pid;

        int             daemon_mode;

        time_t          last_command_check;

        time_t          last_log_rotation;

        int             notifications_enabled;

        int             active_service_checks_enabled;

        int             passive_service_checks_enabled;

        int             active_host_checks_enabled;

        int             passive_host_checks_enabled;

        int             event_handlers_enabled;

        int             flap_detection_enabled;

        int             failure_prediction_enabled;

        int             process_performance_data;

        int             obsess_over_hosts;

        int             obsess_over_services;

        unsigned long   modified_host_attributes;

        unsigned long   modified_service_attributes;

        char            *global_host_event_handler;

        char            *global_service_event_handler;

        }nebstruct_program_status_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_PROGRAMSTATUS_UPDATE
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.19
NEBCALLBACK_HOST_STATUS_DATA
Description

Data Structure

/* host status structure */

typedef struct nebstruct_host_status_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        void            *object_ptr;

        }nebstruct_host_status_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_HOSTSTATUS_UPDATE
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.20
NEBCALLBACK_SERVICE_STATUS_DATA
Description

Data Structure

/* service status structure */

typedef struct nebstruct_service_status_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        void            *object_ptr;

        }nebstruct_service_status_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_SERVICESTATUS_UPDATE
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.21
NEBCALLBACK_ADAPTIVE_PROGRAM_DATA
Description

Data Structure

/* adaptive program data structure */

typedef struct nebstruct_adaptive_program_data_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             command_type;

        unsigned long   modified_host_attribute;

        unsigned long   modified_host_attributes;

        unsigned long   modified_service_attribute;

        unsigned long   modified_service_attributes;

        char            *global_host_event_handler;

        char            *global_service_event_handler;

        }nebstruct_adaptive_program_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_ADAPTIVEPROGRAM_UPDATE
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.22
NEBCALLBACK_ADAPTIVE_HOST_DATA
Description

Data Structure

/* adaptive host data structure */

typedef struct nebstruct_adaptive_host_data_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             command_type;

        unsigned long   modified_attribute;

        unsigned long   modified_attributes;

        void            *object_ptr;

        }nebstruct_adaptive_host_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_ADAPTIVEHOST_UPDATE
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.23
NEBCALLBACK_ADAPTIVE_SERVICE_DATA
Description

Data Structure

/* adaptive service data structure */

typedef struct nebstruct_adaptive_service_data_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             command_type;

        unsigned long   modified_attribute;

        unsigned long   modified_attributes;

        void            *object_ptr;

        }nebstruct_adaptive_service_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_ADAPTIVESERVICE_UPDATE
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.24
NEBCALLBACK_EXTERNAL_COMMAND_DATA
Description

Data Structure

/* external command data structure */

typedef struct nebstruct_external_command_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             command_type;

        time_t          entry_time;

        char            *command_string;

        char            *command_args;

        }nebstruct_external_command_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_EXTERNALCOMMAND_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_EXTERNALCOMMAND_END
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.25
NEBCALLBACK_AGGREGATED_STATUS_DATA
Description

Data Structure

/* aggregated status data structure */

typedef struct nebstruct_aggregated_status_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        }nebstruct_aggregated_status_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_AGGREGATEDSTATUS_STARTDUMP
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_AGGREGATEDSTATUS_ENDDUMP
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.26
NEBCALLBACK_RETENTION_DATA
Description

Data Structure

/* retention data structure */

typedef struct nebstruct_retention_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        }nebstruct_retention_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_RETENTIONDATA_STARTLOAD
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_RETENTIONDATA_ENDLOAD
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_RETENTIONDATA_STARTSAVE
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_RETENTIONDATA_ENDSAVE
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.27
NEBCALLBACK_CONTACT_NOTIFICATION_DATA
Description

Data Structure

/* contact notification data structure */

typedef struct nebstruct_contact_notification_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             notification_type;

        struct timeval  start_time;

        struct timeval  end_time;

        char            *host_name;

        char            *service_description;

        char            *contact_name;

        int             reason_type;

        int             state;

        char            *output;

        char            *ack_author;

        char            *ack_data;

        int             escalated;

        }nebstruct_contact_notification_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_NOTIFICATION_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_NOTIFICATION_END
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_CONTACTNOTIFICATION_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_CONTACTNOTIFICATION_END
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.28
NEBCALLBACK_CONTACT_NOTIFICATION_METHOD_DATA
Description

Data Structure

/* contact notification method data structure */

typedef struct nebstruct_contact_notification_method_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             notification_type;

        struct timeval  start_time;

        struct timeval  end_time;

        char            *host_name;

        char            *service_description;

        char            *contact_name;

        char            *command_name;

        char            *command_args;

        int             reason_type;

        int             state;

        char            *output;

        char            *ack_author;

        char            *ack_data;

        int             escalated;

        }nebstruct_contact_notification_method_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_CONTACTNOTIFICATIONMETHOD_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_CONTACTNOTIFICATIONMETHOD_END
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.29
NEBCALLBACK_ACKNOWLEDGEMENT_DATA
Description

Data Structure

/* acknowledgement structure */

typedef struct nebstruct_acknowledgement_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             acknowledgement_type;

        char            *host_name;

        char            *service_description;

        int             state;

        char            *author_name;

        char            *comment_data;

        int             is_sticky;

        int             persistent_comment;

        int             notify_contacts;

        }nebstruct_acknowledgement_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_ACKNOWLEDGEMENT_ADD
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_ACKNOWLEDGEMENT_REMOVE
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_ACKNOWLEDGEMENT_LOAD
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
A.30
NEBCALLBACK_STATE_CHANGE_DATA
Description

Data Structure

/* state change structure */

typedef struct nebstruct_statechange_struct{

        int             type;

        int             flags;

        int             attr;

        struct timeval  timestamp;

        int             statechange_type;

        char            *host_name;

        char            *service_description;

        int             state;

        int             state_type;

        int             current_attempt;

        int             max_attempts;

        char            *output;

        }nebstruct_statechange_data;

Invocation

	Event Types
	Flags
	Attributes
	Description

	NEBTYPE_STATECHANGE_START
	NEBFLAG_NONE
	NEBATTR_NONE
	

	NEBTYPE_STATECHANGE_END
	NEBFLAG_NONE
	NEBATTR_NONE
	


Relevant Internal Structures

Examples
Appendix B: Catalog of Global NagiosData Structures
B.1
TBA
