

Nagios® Version 1.0
Documentation

Copyright © 1999-2002 Ethan Galstad
Email: nagios@nagios.org

Last Updated: 08-28-2002

[Table of Contents]

Nagios and the Nagios logo are registered trademarks of Ethan Galstad. All other trademarks, servicemarks, registered trademarks,
and registered servicemarks mentioned herein may be the property of their respective owner(s). The information contained herein is

provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE.

http://www.nagios.org/
mailto:nagios@nagios.org

Version 1.0 Documentation

Table of Contents

About

What is Nagios?
System requirements
Licensing
Downloading the latest version
Other monitoring utilities

Release Notes

What's new in this version
Change log

Support

Frequently Asked Questions (FAQs)
Mailing lists
Contract help

Getting Started

Advice for beginners

Installing Nagios

Compiling and installing Nagios
Setting up the web interface

Configuring Nagios

http://www.nagios.org/
http://www.nagios.org/support/index.php#mailinglists
http://www.nagios.org/support/index.php#contract

Configuration overview
Main configuration file options
Object configuration file options
CGI configuration file options
Configuring authorization for the CGIs
Extended information configuration

Running Nagios

Verifying the configuration
Starting Nagios
Stopping and restarting Nagios

Nagios Plugins

Standard plugins
Writing your own plugins

Nagios Addons

nrpe - Daemon and plugin for executing plugins on remote hosts
nsca- Daemon and client program for sending passive check results across the network

Theory Of Operation

Determing status and reachability of network hosts
Network outages
Notifications
Plugin theory
Service check scheduling
State types
Time periods

Advanced Topics

Event handlers
External commands
Indirect host and service checks
Passive service checks
Volatile services
Service result freshness checks
Distributed monitoring
Redundant and failover monitoring

Detection and handling of state flapping
Service check parallelization
Notification escalations
Monitoring service and host clusters
Host and service dependencies
State stalking
Performance data
Scheduled host and service downtime
Database support
Using the embedded Perl interpreter
Object inheritence using template-based config data
Time-saving tips for templated-based object definitions

Integration With Other Software

Portsentry
SNMP Traps
TCP Wrappers

Miscellaneous

Securing Nagios
Tuning Nagios for maximum performance
Using macros in commands
Information on the CGIs
Custom CGI headers and footers

About NagiosTM

What Is This?

NagiosTM is a system and network monitoring application. It watches hosts and services that you specify,
alerting you when things go bad and when they get better.

NagiosTM was originally designed to run under Linux, although it should work under most other unices as well.
For more information on what operating systems Nagios will and will not run under, see the OS ports page at
http://www.nagios.org/ports.shtml.

Some of the many features of NagiosTM include:

● Monitoring of network services (SMTP, POP3, HTTP, NNTP, PING, etc.)
● Monitoring of host resources (processor load, disk usage, etc.)
● Simple plugin design that allows users to easily develop their own service checks
● Parallelized service checks
● Ability to define network host hierarchy using "parent" hosts, allowing detection of and distinction

between hosts that are down and those that are unreachable
● Contact notifications when service or host problems occur and get resolved (via email, pager, or user-

defined method)
● Ability to define event handlers to be run during service or host events for proactive problem resolution
● Automatic log file rotation
● Support for implementing redundant monitoring hosts
● Optional web interface for viewing current network status, notification and problem history, log file, etc.

System Requirements

The only requirement of running Nagios is a machine running Linux (or UNIX variant) and a C compiler. You
will probably also want to have TCP/IP configured, as most service checks will be performed over the network.

You are not required to use the CGIs included with Nagios. However, if you do decide to use them, you will
need to have the following software installed...

1. A web server (preferrably Apache)
2. Thomas Boutell's gd library version 1.6.3 or higher (required by the statusmap and trends CGIs)

Licensing

NagiosTM is licensed under the terms of the GNU General Public License Version 2 as published by the Free
Software Foundation. This gives you legal permission to copy, distribute and/or modify Nagios under certain
conditions. Read the 'LICENSE' file in the Nagios distribution or read the online version of the license for more

http://www.linux.com/
http://www.nagios.org/ports.shtml
http://www.apache.org/
http://www.boutell.com/gd/
http://www.gnu.org/copyleft/gpl.html
http://www.fsf.org/
http://www.fsf.org/
http://www.gnu.org/copyleft/gpl.html

details.

NagiosTM is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgements

Several people have contributed to Nagios by either reporting bugs, suggesting improvements, writing plugins,
etc. A list of some of the many contributors to the development of Nagios can be found at
http://www.nagios.org.

Downloading The Latest Version

You can check for new versions of Nagios at http://www.nagios.org.

Other Monitoring Utilities

In case you weren't aware, there are other network monitoring utilities available besides Nagios. I think Nagios
is a pretty good contender, but I'm obviously biased. Here are links to a few other free monitoring utilities. There
are many others that are not listed here - search the net (or Freshmeat) and you'll find them.

● Angel Network Monitor
● Autostatus
● Big Brother
● HiWAyS
● MARS
● Mon
● Netup (French)
● NocMonitor
● NodeWatch
● Penemo
● PIKT
● RITW
● Scotty
● Spong
● Sysmon

Nagios and the Nagios logo are trademarks of Ethan Galstad. All other trademarks, servicemarks, registered trademarks, and registered servicemarks may be the
property of their respective owner(s).

http://www.nagios.org/
http://www.nagios.org/
http://freshmeat.net/browse/152/
http://www.paganini.net/angel/
http://www.angio.net/consult/autostatus/
http://maclawran.ca/sean/bb-dnld/
http://www.hiways.org/
http://www.altara.org/mars.html
http://www.kernel.org/software/mon/
http://www.pasteur.fr/units/sis/netup/
http://www2.discpro.org/nocmon/
http://www.skendric.com/nodewatch/
http://www.communityprojects.org/apps/penemo/
http://pikt.org/
http://www.terravista.pt/Ancora/1883/ritw_e.html
http://wwwhome.cs.utwente.nl/~schoenw/scotty/
http://spong.sourceforge.net/
http://www.sysmon.org/

What's New in Version 1.0

Important: Make sure you read through the documentation (especially the FAQs) before sending a question to
the mailing lists.

Many of the changes described below are the direct result of this project being renamed from NetSaint.
Transitioning from NetSaint to Nagios will undoubtedly take some time, but it'll be well worth it.

Change Log

The change log for Nagios can be found online at http://www.nagios.org or in the Changelog file in the root
directory of the source code distribution.

Changes

1. User/Group Change. The default user/group that Nagios runs under is now nagios/nagios.

2. Directory Change. The default directory that Nagios gets installed in is now /usr/local/nagios.

3. URL Changes. The base URLs for accessing the HTML files and CGIs through the web interface are
now /nagios/ and /nagios/cgi-bin/, respectively.

4. Config File Changes. The main config file is now nagios.cfg and the CGI config file is now cgi.cfg.

5. Process Check Command Changes. The old process_check_command variable in the CGI config file
has been renamed to nagios_check_command. Also, if you do not specify a check command, the CGIs
will assume the Nagios process is running properly.

6. Archive Changes. Archived log files from Netsaint must be renamed from "netsaint-date.log" format to
"nagios-date.log" format if you want to make them available to the Nagios CGIs. You can rename all
your archived log files with the following command (assuming you've already moved them to their new
directory location): rename netsaint nagios netsaint*.log

7. Retention File Format Change. The format of the retention file (or database, if that's what you were
using) has changed to support more variables. No conversion utility is yet available, which means you'll
either have to find a way to manually convert your retention data, or lose it when you make the
changeover.

8. Database Schema Changes. The database schema for status, retention, comment, and extended
information data has changed. If you were using database support previously, you'll either have to
recreate the databases using the sample scripts provided in the contrib/database directory just alter
your existing tables (an exercise which will be left to you). Also note that the default database name is
now nagios.

New Features

http://www.nagios.org/

1. Template-Based Object Config File. This is probably the biggest feature which has been added. Use
of the template-based object config file format is optional, but highly recommended. Note that the older
config file format is still supported if you really want it. The template-based config file is much easier to
read, modify, and expand upon compared to the older format. It also allows you to specify host- and
service-specific values for things like flap detection thresholds, flap detection and performance data
processing options, etc. If you're interested in trying out the new template-based config file format,
check out the convertcfg utility in the contrib/ directory of the distribution - it can be used to quickly
convert your old config files to the template-based format. More information on the template-based
object config file can be found here.

2. Template-Based Extended Info Config File. This is similar to the template-based object configuration
file format mentioned above. You can now store extended host and service information in a template-
based config file. More information on doing this can be found here. If you wish, you can still use the
older style of defining extended information directives in the CGI configuration file as described here.

3. Host Dependencies. You can now define optional host dependencies which will prevent notifications
from being sent out for a host if one or more criteria fail. In the past there have been implicit
dependencies between hosts that are related through "parenting", but this now allows you to create
explicit dependencies between unrelated hosts. More information on dependencies can be found here.

4. Host Escalations. You can now define optional notification escalations for specific hosts. In the past
you were only able to define escalations for entire hostgroups. While this was closely matched to non-
escalated notification logic, it didn't provide much flexibility. Note that hostgroup escalations are still
supported and can be used in conjunction with host escalations. More information on notification
escalations can be found here.

5. Freshness Checking. Nagios now internally handles the concept of "freshness checking" of service
check results. If freshness checking is enabled for a particular service, Nagios will force an active check
of that service if the results from the last check are "stale" or "too old" (as determined by a threshold you
specify). This makes implementing distributed monitoring servers much simpler, as you don't need an
additional addon to make sure service results are "fresh". More information on how freshness checking
works can be found here.

6. Scheduled Downtime. Scheduled downtime for hosts and service is now retained across program
starts. Additionally, you can now distinguish between "fixed" and "flexible" downtime. Fixed downtime
starts and stops at absolute times, while flexible downtime starts when a host or service first goes into a
problem state. More information on scheduled downtime can be found here.

7. State Stalking. You can now enable "stalking" for different states on a per-host or per-service basis.
Stalking provides you with more information about problems when you're analyzing archived log data.
More information on state stalking can be found here.

8. File-Based Performance Data Processing. Nagios can now be compiled to dump performance data
directly to a file in a format you define. This method is must faster and requires far less overhead that
the default method of processing performance data. More information on the file-based option can be
found here. General information about performance data can be found here.

9. New Histogram CGI. A new histogram CGI has been added. This CGI allows you to see better analyze

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xoddefault.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xoddefault.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xedtemplate.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xeddefault.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xpdfile.html

when host and service alerts occur over various periods of time.

10. New Summary CGI. A new summary CGI has been added. This CGI allows you to generated basic
reports about host and service alerts over various periods of time. Reports can be created to show alert
totals, top alert producers, most recent alerts, etc.

11. Statusmap CGI Improvements. Several new layout methods have been added to the statusmap CGI.
You can also now specify a default layout method with the default_statusmap_layout directive.

12. Availability CGI Improvements. I have made several enhancements to the code in the availability
CGI, including the ability to separate scheduled downtime from non-scheduled downtime.

13. Configuration Directory. You can now specify one or more directories that should be scanned for
object configuration files by using the cfg_dir directive. You can use this in conjunction with (or instead
of) the cfg_file directive.

14. Custom CGI Headers/Footers. You can now include optional headers and footers in the CGIs. This is
most useful if you do custom Nagios installations for customers and want to include tag line, contact
info, etc in each page. More information on doing this can be found here.

15. Cleaning Of Dangerous Macro Output Characters. Potentially dangerous characters can now be
stripped from the $OUTPUT$ and $PERFDATA$ macros before they're used in notification commands,
etc. by using the illegal_macro_output_chars directive. At a bare minimum, I highly recommend you
strip out the characters shown in the example, or an attacker might be able to execute arbitrary
commands as the nagios user!

Frequently Asked Questions (FAQs)

Online FAQ Database

A searchable FAQ database can now be found online at http://www.nagios.org/faqs.

http://www.nagios.org/faqs/

Advice for Beginners

Congrats on choosing to try Nagios! Nagios is quite powerful and flexible, but unfortunately its not very friendly
to newbies. Why? Because it takes a lot of work to get it installed and configured properly. That being said, if
you stick with it and manage to get it up and running, you'll never want to be without it. :-) Here are some very
important things to keep in mind for those of you who are first-time users of Nagios:

1. Relax - its going to take some time. Don't expect to be able to compile Nagios and start it up right off
the bat. Its not that easy. In fact, its pretty difficult. If you don't want to spend time learning how things
work and getting things running smoothly, don't bother using this software. Instead, pay someone to
monitor your network for you or hire someone to install Nagios for you. :-)

2. Read the documentation. Nagios is difficult enough to configure when you've got a good grasp of
what's going on, and nearly impossible if you don't. Do yourself a favor and read before blindly
attempting to install and run Nagios. If you're the type who doesn't want to take the time to read the
documentation, you'll probably find that others won't find the time to help you out when you have
problems. RTFM.

3. Use the sample config files. Sample configuration files are provided with Nagios. Look at them,
modify them for your particular setup and test them! The sample files are just that - samples. There's a
very good chance that they won't work for you without modifications. Sample config files can be found in
the sample-config/ subdirectory of the Nagios distribution.

4. Seek the help of others. If you've read the documentation, reviewed the sample config files, and are
still having problems, try sending a descriptive email message describing your problems to the nagios-
users mailing list. Due to the amount of work that I have to do for this project, I am unable to answer
most of the questions that get sent directly to me, so your best source of help is going to be the mailing
list. If you've done some background reading and you provide a good problem description, odds are that
someone will give you some pointers on getting things working properly.

Installing Nagios

Important: Installing and configuring Nagios is rather involved. You can't just compile the binaries, run the
program and sit back. There's a lot to setup before you can actually start monitoring anything. Relax, take your
time and read all the documentation - you're going to need it. Okay, let's get started...

Unpacking The Distribution

To unpack the Nagios distribution, type the following two commands at a shell prompt:

gunzip nagios-1.0.tar.gz
tar xf nagios-1.0.tar

If you downloaded the ZIP version of the distribution, type the following:

unzip nagios-1.0.zip

When you have finished executing these commands, you should find a nagios-1.0 directory that has been
created in your current directory. Inside that directory you will find all the files that compromise the core Nagios
distribution.

Create Installation Directory

Create the base directory where you would like to install Nagios as follows...

mkdir /usr/local/nagios

Create User/Group

You're probably going to want to run Nagios under a normal user account, so add a new user (and group) to
your system with the following commands (these will vary depending on what OS you're running):

adduser nagios

Run the Configure Script

Run the configure script to initialize variables and create a Makefile as follows...

./configure --prefix=prefix --with-cgiurl=cgiurl --with-htmurl=htmurl --with-nagios-user=someuser --with-
nagios-grp=somegroup

● Replace prefix with the installation directory that you created in the step above (default is

/usr/local/nagios)
● Replace cgiurl with the actual url you will be using to access the CGIs (default is /nagios/cgi-bin). Do

NOT append a slash at the end of the url.
● Replace htmurl with the actual url you will be using to access the HTML for the main interface and

documentation (default is /nagios/)
● Replace someuser with the name of a user on your system that will be used for setting permissions on

the installed files (default is nagios)
● Replace somegroup with the name of a group on your system that will be used for setting permissions

on the installed files (default is nagios)

Compile Binaries

Compile Nagios and the CGIs with the following command:

make all

Installing The Binaries And HTML Files

Install the binaries and HTML files (documentation and main web page) with the following command:

make install

Installing An Init Script

If you wish, you can also install the sample init script to /etc/rc.d/init.d/nagios with the following command:

make install-init

You may have to edit the init script to make sense with your particular OS and Nagios installation by editing
paths, etc.

Directory Structure And File Locations

Change to the root of your Nagios installation directory with the following command...

cd /usr/local/nagios

You should see five different subdirectories. A brief description of what each directory contains is given in the
table below.

Sub-Directory Contents
bin/ Nagios core program

etc/ Main, resource, object, and CGI configuration files should be put here

sbin/ CGIs

share/ HTML files (for web interface and online documentation)

var/ Empty directory for the log file

Installing The Plugins

In order for Nagios to be of any use to you, you're going to have to download and install some plugins. Plugins
are usually installed in the libexec/ directory of your Nagios installation (i.e. /usr/local/nagios/libexec). Plugins
are scripts or binaries which perform all the service and host checks that constitute monitoring. You can grab
the latest release of the plugins from the Nagios downloads page or directly from the SourceForge project
page.

Setup The Web Interface

You're probably going to want to use the web interface, so you'll also have to read the instructions on setting up
the web interface and configuring web authentication, etc. next.

Configuring Nagios

So now you have things compiled and installed, but you still haven't configured Nagios or defined objects
(hosts, services, etc.) that should be monitored. Information on configuring Nagios and defining objects can be
found here. There's a lot to configure, but don't let it discourage you - its well worth it.

http://www.nagios.org/download/
http://sourceforge.net/projects/nagiosplug/
http://sourceforge.net/projects/nagiosplug/

Setting Up The Web Interface

Notes

In these instructions I will assume that you are running the Apache web server on your machine. If you are
using some other web server, you'll have to make changes where appropriate. I am also assuming that you
used the /usr/local/nagios as the installation prefix.

Configure Script Alias For The CGIs

You'll need to create an alias for the CGIs as well. The default installation expects to find them accessible at
http://yourmachine/nagios/cgi-bin/, although this can be changed using the --with-cgiurl option in the
configure script. Anyway, add something like the following to your web server configuration file (i.e. httpd.conf)
(changing it to match any directory differences on your system)...

ScriptAlias /nagios/cgi-bin/ /usr/local/nagios/sbin/
<Directory "/usr/local/nagios/sbin/">
 AllowOverride AuthConfig
 Options ExecCGI
 Order allow,deny
 Allow from all
</Directory>

Important! The Script-Alias line above must come before the Alias line below. Otherwise Apache will parse the
lines differently.

Important! If you are installing Nagios on a multi-user system, you may want use CGIWrap to provide
additional security between the CGIs and the external command file. If you decide to use CGIWrap, the
ScriptAlias you'll end up using will most likely be different from that mentioned above. More information on
doing this can be found here.

Configure Alias For The HTML Files

In order to make the HTML files accessible via the web server, you'll have to edit your Apache configuration file
as follows...

Add the following to your web server configuration file (i.e. httpd.conf) as follows:

http://www.apache.org/
http://cgiwrap.unixtools.org/
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/commandfile.html

Alias /nagios/ /usr/local/nagios/share/
<Directory "/usr/local/nagios/share">
 Options None
 AllowOverride AuthConfig
 Order allow,deny
 Allow from all
</Directory>

This will allow you to use an URL like http://yourmachine/nagios/ to view the HTML web interface and
documentation. The alias should be the same value that you entered for the --with-htmurl argument to the
configure script (default is /nagios/).

Important! The Alias directive you just added for the HTML files must come after the ScriptAlias directive for
the CGIs. If it doesn't, you'll get a 404 error when attempting to access the CGIs.

Restart The Web Server

Once you've finished editing the Apache configuration file, you'll need to restart the web server with a command
like this...

/etc/rc.d/init.d/httpd restart

Verify Your Changes

Don't forget to check and see if the changes you made to Apache work. You should be able to point your web
browser at http://yourmachine/nagios and get the web interface for Nagios. The CGIs may not display any
information, but this will be remedied once you configure everything and start Nagios.

Configuring Web Authentication

Once you have configured the web interface properly, you'll need to enable web server authentication for
accessing the CGIs and configure user authorization information. Details on doing this can be found here.

Configuring Nagios

Configuration Overview

There are several different configuration files that you're going to need to create or edit before you start
monitoring anything. They are described below...

Main Configuration File

The main configuration file (usually /usr/local/nagios/etc/nagios.cfg) contains a number of directives that affect
how Nagios operates. This config file is read by both the Nagios process and the CGIs. This is the first
configuration file you're going to want to create or edit.

Documentation for the main configuration file can be found here.

A sample main configuration file is generated automatically when you run the configure script before compiling
the binaries. Look for it either in the distribution directory or the etc/ subdirectory of your installation. When you
install the sample config files using the make install-config command, a sample main configuration file will be
placed into your settings directory (usually /usr/local/nagios/etc). The default name of the main configuration file
is nagios.cfg.

Resource File(s)

Resource files can be used to store user-defined macros. Resource files can also contain other information
(like database connection settings), although this will depend on how you've compiled Nagios. The main point
of having resource files is to use them to store sensitive configuration information and not make them available
to the CGIs.

You can specify one or more optional resource files by using the resource_file directive in the main
configuration file.

Object Configuration Files

Object configuration files (historically called "host" configuration files) are used to define hosts, services,
hostgroups, contacts, contactgroups, commands, etc. This is where you define what things you want monitor
and how you want to monitor them.

Documentation for the object configuration files can be found here.

CGI Configuration File

The CGI configuration file (usually /usr/local/nagios/etc/cgi.cfg) contains a number of directives that affect the

operation of the CGIs.

Documentation for the CGI configuration file can be found here.

A sample CGI configuration file is generated automatically when you run the configure script before compiling
the binaries. When you install the sample config files using the make install-config command, the CGI
configuration file will be placed in the same directory as the main and host config files (usually
/usr/local/nagios/etc). The default name of the CGI configuration file is cgi.cfg.

Extedned Information Configuration Files

Extended information configuration files are used to define additional information for hosts and services that
should be used by the CGI. This is where you define things like drawing coordinates, pretty icons, etc.

Documentation for the extended information configuration files can be found here.

Main Configuration File Options

Notes

When creating and/or editing configuration files, keep the following in mind:

1. Lines that start with a '#' character are taken to be comments and are not processed
2. Variables names must begin at the start of the line - no white space is allowed before the name
3. Variable names are case-sensitive

Sample Configuration

A sample main configuration file is created in the base directory of the Nagios distribution when you run the
configure script. The default name of the main configuration file is nagios.cfg - its usually placed in the etc/
subdirectory of you Nagios installation (i.e. /usr/local/nagios/etc/).

Index

Log file
Object configuration file
Object configuration directory
Resource file
Temp file

Status file
Aggregated status updates option
Aggregated status data update interval

Nagios user
Nagios group

Notifications option
Service check execution option
Passive service check acceptance option
Event handler option

Log rotation method
Log archive path

External command check option
External command check interval
External command file

Comment file
Downtime file
Lock file

State retention option
State retention file
Automatic state retention update interval
Use retained program state option

Syslog logging option
Notification logging option
Service check retry logging option
Host retry logging option
Event handler logging option
Initial state logging option
External command logging option
Passive service check logging option

Global host event handler
Global service event handler

Inter-check sleep time
Inter-check delay method
Service interleave factor
Maximum concurrent service checks
Service reaper frequency
Timing interval length

Agressive host checking option

Flap detection option
Low service flap threshold
High service flap threshold
Low host flap threshold
High host flap threshold

Soft service dependencies option

Service check timeout
Host check timeout
Event handler timeout
Notification timeout
Obsessive compulsive service processor timeout
Performance data processor command timeout

Obsess over services option
Obsessive compulsive service processor command

Performance data processing option

Orphaned service check option

Service freshness checking option
Service freshness checking option

Illegal object name characters
Illegal macro output characters

Administrator email address
Administrator pager

Log File

Format: log_file=<file_name>
Example: log_file=/usr/local/nagios/var/nagios.log

This variable specifies where Nagios should create its main log file. This should be the first variable that you
define in your configuration file, as Nagios will try to write errors that it finds in the rest of your configuration
data to this file. If you have log rotation enabled, this file will automatically be rotated every hour, day, week, or
month.

Object Configuration File

Format: cfg_file=<file_name>

Example:
cfg_file=/usr/local/nagios/etc/hosts.cfg
cfg_file=/usr/local/nagios/etc/services.cfg
cfg_file=/usr/local/nagios/etc/commands.cfg

This directive is used to specify an object configuration file that Nagios should use for monitoring. This file has
traditionally been called the "host" config file, even though it may contain more than just host definitions. Object
configuration files contain definitions for hosts, host groups, contacts, contact groups, services, commands, etc.
You can seperate your configuration information into several files and specify multiple cfg_file= statements to
have each of them processed.

Object Configuration Directory

Format: cfg_dir=<directory_name>

Example:
cfg_dir=/usr/local/nagios/etc/commands
cfg_dir=/usr/local/nagios/etc/services
cfg_dir=/usr/local/nagios/etc/hosts

This directive is used to specify a directory which contains object configuration files that Nagios should use for
monitoring. All files in the directory with a .cfg extension are processed as object config files. You can seperate
your configuration files into different directories and specify multiple cfg_dir= statements to have all config files
in each directory processed.

Resource File

Format: resource_file=<file_name>
Example: resource_file=/usr/local/nagios/etc/resource.cfg

This is used to specify an optional resource file that can contain $USERn$ macro definitions. $USERn$ macros
are useful for storing usernames, passwords, and items commonly used in command definitions (like directory
paths). The CGIs will not attempt to read resource files, so you can set restrictive permissions (600 or 660) on
them to protect sensitive information. You can include multiple resource files by adding multiple resource_file
statements to the main config file - Nagios will process them all. See the sample resource.cfg file in the base of
the Nagios directory for an example of how to define $USERn$ macros.

Temp File

Format: temp_file=<file_name>
Example: temp_file=/usr/local/nagios/var/nagios.tmp

This is a temporary file that Nagios periodically creates to use when updating comment data, status data, etc.
The file is deleted when it is no longer needed.

Status File

Format: status_file=<file_name>
Example: status_file=/usr/local/nagios/var/status.log

This is the file that Nagios uses to store the current status of all monitored services. The status of all hosts
associated with the service you monitor are also recorded here. This file is used by the CGIs so that current
monitoring status can be reported via a web interface. The CGIs must have read access to this file in order to
function properly. This file is deleted every time Nagios stops and recreated when it starts.

Aggregated Status Updates Option

Format: aggregate_status_updates=<0/1>
Example: aggregate_status_updates=1

This option determines whether or not Nagios will aggregate updates of host, service, and program status data.
If you do not enable this option, status data is updated every time a host or service checks occurs. This can

result in high CPU loads and file I/O if you are monitoring a lot of services. If you want Nagios to only update
status data (in the status file) every few seconds (as determined by the status_update_interval option), enable
this option. If you want immediate updates, disable it. I would highly recommend using aggregated updates
(even at short intervals) unless you have good reason not to. Values are as follows:

● 0 = Disable aggregated updates
● 1 = Enabled aggregated updates (default)

Aggregated Status Update Interval

Format: status_update_interval=<seconds>
Example: status_update_interval=15

This setting determines how often (in seconds) that Nagios will update status data in the status file. The
minimum update interval is five seconds. If you have disabled aggregated status updates (with the
aggregate_status_updates option), this option has no effect.

Nagios User

Format: nagios_user=<username/UID>
Example: nagios_user=nagios

This is used to set the effective user that the Nagios process should run as. After initial program startup and
before starting to monitor anything, Nagios will drop its effective privileges and run as this user. You may
specify either a username or a UID.

Nagios Group

Format: nagios_group=<groupname/GID>
Example: nagios_group=nagios

This is used to set the effective group that the Nagios process should run as. After initial program startup and
before starting to monitor anything, Nagios will drop its effective privileges and run as this group. You may
specify either a groupname or a GID.

Notifications Option

Format: enable_notifications=<0/1>
Example: enable_notifications=1

This option determines whether or not Nagios will send out notifications when it initially (re)starts. If this option

is disabled, Nagios will not send out notifications for any host or service. Note: If you have state retention
enabled, Nagios will ignore this setting when it (re)starts and use the last known setting for this option (as
stored in the state retention file), unless you disable the use_retained_program_state option. If you want to
change this option when state retention is active (and the use_retained_program_state is enabled), you'll have
to use the appropriate external command or change it via the web interface. Values are as follows:

● 0 = Disable notifications
● 1 = Enable notifications (default)

Service Check Execution Option

Format: execute_service_checks=<0/1>
Example: execute_service_checks=1

This option determines whether or not Nagios will execute service checks when it initially (re)starts. If this
option is disabled, Nagios will not actively execute any service checks and will remain in a sort of "sleep" mode
(it can still accept passive checks unless you've disabled them). This option is most often used when
configuring backup monitoring servers, as described in the documentation on redundancy, or when setting up a
distributed monitoring environment. Note: If you have state retention enabled, Nagios will ignore this setting
when it (re)starts and use the last known setting for this option (as stored in the state retention file), unless you
disable the use_retained_program_state option. If you want to change this option when state retention is active
(and the use_retained_program_state is enabled), you'll have to use the appropriate external command or
change it via the web interface. Values are as follows:

● 0 = Don't execute service checks
● 1 = Execute service checks (default)

Passive Service Check Acceptance Option

Format: accept_passive_service_checks=<0/1>
Example: accept_passive_service_checks=1

This option determines whether or not Nagios will accept passive service checks when it initially (re)starts. If
this option is disabled, Nagios will not accept any passive service checks. Note: If you have state retention
enabled, Nagios will ignore this setting when it (re)starts and use the last known setting for this option (as
stored in the state retention file), unless you disable the use_retained_program_state option. If you want to
change this option when state retention is active (and the use_retained_program_state is enabled), you'll have
to use the appropriate external command or change it via the web interface. Values are as follows:

● 0 = Don't accept passive service checks
● 1 = Accept passive service checks (default)

Event Handler Option

Format: enable_event_handlers=<0/1>
Example: enable_event_handlers=1

This option determines whether or not Nagios will run event handlers when it initially (re)starts. If this option is
disabled, Nagios will not run any host or service event handlers. Note: If you have state retention enabled,
Nagios will ignore this setting when it (re)starts and use the last known setting for this option (as stored in the
state retention file), unless you disable the use_retained_program_state option. If you want to change this
option when state retention is active (and the use_retained_program_state is enabled), you'll have to use the
appropriate external command or change it via the web interface. Values are as follows:

● 0 = Disable event handlers
● 1 = Enable event handlers (default)

Log Rotation Method

Format: log_rotation_method=<n/h/d/w/m>
Example: log_rotation_method=d

This is the rotation method that you would like Nagios to use for your log file. Values are as follows:

● n = None (don't rotate the log - this is the default)
● h = Hourly (rotate the log at the top of each hour)
● d = Daily (rotate the log at midnight each day)
● w = Weekly (rotate the log at midnight on Saturday)
● m = Monthly (rotate the log at midnight on the last day of the month)

Log Archive Path

Format: log_archive_path=<path>
Example: log_archive_path=/usr/local/nagios/var/archives/

This is the directory where Nagios should place log files that have been rotated. This option is ignored if you
choose to not use the log rotation functionality.

External Command Check Option

Format: check_external_commands=<0/1>
Example: check_external_commands=1

This option determines whether or not Nagios will check the command file for internal commands it should
execute. This option must be enabled if you plan on using the command CGI to issue commands via the web
interface. Third party programs can also issue commands to Nagios by writing to the command file, provided
proper rights to the file have been granted as outlined in this FAQ. More information on external commands can
be found here.

● 0 = Don't check external commands (default)
● 1 = Check external commands

External Command Check Interval

Format: command_check_interval=<xxx>[s]
Example: command_check_interval=1

If you specify a number with an "s" appended to it (i.e. 30s), this is the number of seconds to wait between
external command checks. If you leave off the "s", this is the number of "time units" to wait between external
command checks. Unless you've changed the interval_length value (as defined below) from the default value of
60, this number will mean minutes.

Note: By setting this value to -1, Nagios will check for external commands as often as possible. Each time
Nagios checks for external commands it will read and process all commands present in the command file
before continuing on with its other duties. More information on external commands can be found here.

External Command File

Format: command_file=<file_name>
Example: command_file=/usr/local/nagios/var/rw/nagios.cmd

This is the file that Nagios will check for external commands to process. The command CGI writes commands
to this file. Other third party programs can write to this file if proper file permissions have been granted as
outline in here. The external command file is implemented as a named pipe (FIFO), which is created when
Nagios starts and removed when it shuts down. If the file exists when Nagios starts, the Nagios process will
terminate with an error message. More information on external commands can be found here.

Downtime File

Format: downtime_file=<file_name>
Example: downtime_file=/usr/local/nagios/var/downtime.log

This is the file that Nagios will use for storing scheduled host and service downtime information. Comments can
be viewed and added for both hosts and services through the extended information CGI.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/command_file/index.htm
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/commandfile.html

Comment File

Format: comment_file=<file_name>
Example: comment_file=/usr/local/nagios/var/comment.log

This is the file that Nagios will use for storing service and host comments. Comments can be viewed and added
for both hosts and services through the extended information CGI.

Lock File

Format: lock_file=<file_name>
Example: lock_file=/tmp/nagios.lock

This option specifies the location of the lock file that Nagios should create when it runs as a daemon (when
started with the -d command line argument). This file contains the process id (PID) number of the running
Nagios process.

State Retention Option

Format: retain_state_information=<0/1>
Example: retain_state_information=1

This option determines whether or not Nagios will retain state information for hosts and services between
program restarts. If you enable this option, you should supply a value for the state_retention_file variable. When
enabled, Nagios will save all state information for hosts and service before it shuts down (or restarts) and will
read in previously saved state information when it starts up again.

● 0 = Don't retain state information (default)
● 1 = Retain state information

State Retention File

Format: state_retention_file=<file_name>
Example: state_retention_file=/usr/local/nagios/var/status.sav

This is the file that Nagios will use for storing service and host state information before it shuts down. When
Nagios is restarted it will use the information stored in this file for setting the initial states of services and hosts
before it starts monitoring anything. This file is deleted after Nagios reads in initial state information when it
(re)starts. In order to make Nagios retain state information between program restarts, you must enable the
retain_state_information option.

Automatic State Retention Update Interval

Format: retention_update_interval=<minutes>
Example: retention_update_interval=60

This setting determines how often (in minutes) that Nagios will automatically save retention data during normal
operation. If you set this value to 0, Nagios will not save retention data at regular intervals, but it will still save
retention data before shutting down or restarting. If you have disabled state retention (with the
retain_state_information option), this option has no effect.

Use Retained Program State Option

Format: use_retained_program_state=<0/1>
Example: use_retained_program_state=1

This setting determines whether or not Nagios will set various program-wide state variables based on the
values saved in the retention file. Some of these program-wide state variables that are normally saved across
program restarts if state retention is enabled include the enable_notifications, enable_flap_detection,
enable_event_handlers, execute_service_checks, and accept_passive_service_checks options. If you do not
have state retention enabled, this option has no effect.

● 0 = Don't use retained program state
● 1 = Use retained program state (default)

Syslog Logging Option

Format: use_syslog=<0/1>
Example: use_syslog=1

This variable determines whether messages are logged to the syslog facility on your local host. Values are as
follows:

● 0 = Don't use syslog facility
● 1 = Use syslog facility

Notification Logging Option

Format: log_notifications=<0/1>
Example: log_notifications=1

This variable determines whether or not notification messages are logged. If you have a lot of contacts or

regular service failures your log file will grow relatively quickly. Use this option to keep contact notifications from
being logged.

● 0 = Don't log notifications
● 1 = Log notifications

Service Check Retry Logging Option

Format: log_service_retries=<0/1>
Example: log_service_retries=1

This variable determines whether or not service check retries are logged. Service check retries occur when a
service check results in a non-OK state, but you have configured Nagios to retry the service more than once
before responding to the error. Services in this situation are considered to be in "soft" states. Logging service
check retries is mostly useful when attempting to debug Nagios or test out service event handlers.

● 0 = Don't log service check retries
● 1 = Log service check retries

Host Check Retry Logging Option

Format: log_host_retries=<0/1>
Example: log_host_retries=1

This variable determines whether or not host check retries are logged. Logging host check retries is mostly
useful when attempting to debug Nagios or test out host event handlers.

● 0 = Don't log host check retries
● 1 = Log host check retries

Event Handler Logging Option

Format: log_event_handlers=<0/1>
Example: log_event_handlers=1

This variable determines whether or not service and host event handlers are logged. Event handlers are
optional commands that can be run whenever a service or hosts changes state. Logging event handlers is most
useful when debugging Nagios or first trying out your event handler scripts.

● 0 = Don't log event handlers
● 1 = Log event handlers

Initial States Logging Option

Format: log_initial_states=<0/1>
Example: log_initial_states=1

This variable determines whether or not Nagios will force all initial host and service states to be logged, even if
they result in an OK state. Initial service and host states are normally only logged when there is a problem on
the first check. Enabling this option is useful if you are using an application that scans the log file to determine
long-term state statistics for services and hosts.

● 0 = Don't log initial states (default)
● 1 = Log initial states

External Command Logging Option

Format: log_external_commands=<0/1>
Example: log_external_commands=1

This variable determines whether or not Nagios will log external commands that it receives from the external
command file. Note: This option does not control whether or not passive service checks (which are a type of
external command) get logged. To enable or disable logging of passive checks, use the
log_passive_service_checks option.

● 0 = Don't log external commands
● 1 = Log external commands (default)

Passive Service Check Logging Option

Format: log_passive_service_checks=<0/1>
Example: log_passive_service_checks=1

This variable determines whether or not Nagios will log passive service checks that it receives from the external
command file. If you are setting up a distributed monitoring environment or plan on handling a large number of
passive checks on a regular basis, you may wish to disable this option so your log file doesn't get too large.

● 0 = Don't log passive service checks
● 1 = Log passive service checks (default)

Global Host Event Handler Option

Format: global_host_event_handler=<command>

Example: global_host_event_handler=log-host-event-to-db

This option allows you to specify a host event handler command that is to be run for every host state change.
The global event handler is executed immediately prior to the event handler that you have optionally specified
in each host definition. The command argument is the short name of a command that you define in your object
configuration file. The maximum amount of time that this command can run is controlled by the
event_handler_timeout option. More information on event handlers can be found here.

Global Service Event Handler Option

Format: global_service_event_handler=<command>
Example: global_service_event_handler=log-service-event-to-db

This option allows you to specify a service event handler command that is to be run for every service state
change. The global event handler is executed immediately prior to the event handler that you have optionally
specified in each service definition. The command argument is the short name of a command that you define in
your object configuration file. The maximum amount of time that this command can run is controlled by the
event_handler_timeout option. More information on event handlers can be found here.

Inter-Check Sleep Time

Format: sleep_time=<seconds>
Example: sleep_time=1

This is the number of seconds that Nagios will sleep before checking to see if the next service check in the
scheduling queue should be executed. Note that Nagios will only sleep after it "catches up" with queued service
checks that have fallen behind.

Inter-Check Delay Method

Format: inter_check_delay_method=<n/d/s/x.xx>
Example: inter_check_delay_method=s

This option allows you to control how service checks are initially "spread out" in the event queue. Using a
"smart" delay calculation (the default) will cause Nagios to calculate an average check interval and spread
initial checks of all services out over that interval, thereby helping to eliminate CPU load spikes. Using no delay
is generally not recommended unless you are testing the service check parallelization functionality. Using no
delay will cause all service checks to be scheduled for execution at the same time. This means that you will
generally have large CPU spikes when the services are all executed in parallel. More information on how to
estimate how the inter-check delay affects service check scheduling can be found here.Values are as follows:

● n = Don't use any delay - schedule all service checks to run immediately (i.e. at the same time!)

● d = Use a "dumb" delay of 1 second between service checks
● s = Use a "smart" delay calculation to spread service checks out evenly (default)
● x.xx = Use a user-supplied inter-check delay of x.xx seconds

Service Interleave Factor

Format: service_interleave_factor=<s|x>
Example: service_interleave_factor=s

This variable determines how service checks are interleaved. Interleaving allows for a more even distribution of
service checks, reduced load on remote hosts, and faster overall detection of host problems. With the
introduction of service check parallelization, remote hosts could get bombarded with checks if interleaving was
not implemented. This could cause the service checks to fail or return incorrect results if the remote host was
overloaded with processing other service check requests. Setting this value to 1 is equivalent to not interleaving
the service checks (this is how versions of Nagios previous to 0.0.5 worked). Set this value to s (smart) for
automatic calculation of the interleave factor unless you have a specific reason to change it. The best way to
understand how interleaving works is to watch the status CGI (detailed view) when Nagios is just starting. You
should see that the service check results are spread out as they begin to appear. More information on how
interleaving works can be found here.

● x = A number greater than or equal to 1 that specifies the interleave factor to use. An interleave factor of
1 is equivalent to not interleaving the service checks.

● s = Use a "smart" interleave factor calculation (default)

Maximum Concurrent Service Checks

Format: max_concurrent_checks=<max_checks>
Example: max_concurrent_checks=20

This option allows you to specify the maximum number of service checks that can be run in parallel at any
given time. Specifying a value of 1 for this variable essentially prevents any service checks from being
parallelized. Specifying a value of 0 (the default) does not place any restrictions on the number of concurrent
checks. You'll have to modify this value based on the system resources you have available on the machine that
runs Nagios, as it directly affects the maximum load that will be imposed on the system (processor utilization,
memory, etc.). More information on how to estimate how many concurrent checks you should allow can be
found here.

Service Reaper Frequency

Format: service_reaper_frequency=<frequency_in_seconds>
Example: service_reaper_frequency=10

This option allows you to control the frequency in seconds of service "reaper" events. "Reaper" events process

the results from parallelized service checks that have finished executing. These events consitute the core of the
monitoring logic in Nagios.

Timing Interval Length

Format: interval_length=<seconds>
Example: interval_length=60

This is the number of seconds per "unit interval" used for timing in the scheduling queue, re-notifications, etc.
"Units intervals" are used in the host configuration file to determine how often to run a service check, how often
of re-notify a contact, etc.

Important: The default value for this is set to 60, which means that a "unit value" of 1 in the host configuration
file will mean 60 seconds (1 minute). I have not really tested other values for this variable, so proceed at your
own risk if you decide to do so!

Agressive Host Checking Option

Format: use_agressive_host_checking=<0/1>
Example: use_agressive_host_checking=0

Nagios tries to be smart about how and when it checks the status of hosts. In general, disabling this option will
allow Nagios to make some smarter decisions and check hosts a bit faster. Enabling this option will increase
the amount of time required to check hosts, but may improve reliability a bit. Unless you have problems with
Nagios not recognizing that a host recovered, I would suggest not enabling this option.

● 0 = Don't use agressive host checking (default)
● 1 = Use agressive host checking

Flap Detection Option

Format: enable_flap_detection=<0/1>
Example: enable_flap_detection=0

This option determines whether or not Nagios will try and detect hosts and services that are "flapping". Flapping
occurs when a host or service changes between states too frequently, resulting in a barrage of notifications
being sent out. When Nagios detects that a host or service is flapping, it will temporarily suppress notifications
for that host/service until it stops flapping. Flap detection is very experimental at this point, so use this feature
with caution! More information on how flap detection and handling works can be found here. Note: If you have
state retention enabled, Nagios will ignore this setting when it (re)starts and use the last known setting for this
option (as stored in the state retention file), unless you disable the use_retained_program_state option. If you
want to change this option when state retention is active (and the use_retained_program_state is enabled),
you'll have to use the appropriate external command or change it via the web interface.

● 0 = Don't enable flap detection (default)
● 1 = Enable flap detection

Low Service Flap Threshold

Format: low_service_flap_threshold=<percent>
Example: low_service_flap_threshold=25.0

This option is used to set the low threshold for detection of service flapping. For more information on how flap
detection and handling works (and how this option affects things) read this.

High Service Flap Threshold

Format: high_service_flap_threshold=<percent>
Example: high_service_flap_threshold=50.0

This option is used to set the low threshold for detection of service flapping. For more information on how flap
detection and handling works (and how this option affects things) read this.

Low Host Flap Threshold

Format: low_host_flap_threshold=<percent>
Example: low_host_flap_threshold=25.0

This option is used to set the low threshold for detection of host flapping. For more information on how flap
detection and handling works (and how this option affects things) read this.

High Host Flap Threshold

Format: high_host_flap_threshold=<percent>
Example: high_host_flap_threshold=50.0

This option is used to set the low threshold for detection of host flapping. For more information on how flap
detection and handling works (and how this option affects things) read this.

Soft Service Dependencies Option

Format: soft_state_dependencies=<0/1>

Example: soft_state_dependencies=0

This option determines whether or not Nagios will use soft service state information when checking service
dependencies. Normally Nagios will only use the latest hard service state when checking dependencies. If you
want it to use the latest state (regardless of whether its a soft or hard state type), enable this option.

● 0 = Don't use soft service state dependencies (default)
● 1 = Use soft service state dependencies

Service Check Timeout

Format: service_check_timeout=<seconds>
Example: service_check_timeout=60

This is the maximum number of seconds that Nagios will allow service checks to run. If checks exceed this
limit, they are killed and a CRITICAL state is returned. A timeout error will also be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch
mechanism to kill off plugins which are misbehaving and not exiting in a timely manner. It should be set to
something high (like 60 seconds or more), so that each service check normally finishes executing within this
time limit. If a service check runs longer than this limit, Nagios will kill it off thinking it is a runaway processes.

Host Check Timeout

Format: host_check_timeout=<seconds>
Example: host_check_timeout=60

This is the maximum number of seconds that Nagios will allow host checks to run. If checks exceed this limit,
they are killed and a CRITICAL state is returned and the host will be assumed to be DOWN. A timeout error will
also be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch
mechanism to kill off plugins which are misbehaving and not exiting in a timely manner. It should be set to
something high (like 60 seconds or more), so that each host check normally finishes executing within this time
limit. If a host check runs longer than this limit, Nagios will kill it off thinking it is a runaway processes.

Event Handler Timeout

Format: event_handler_timeout=<seconds>
Example: event_handler_timeout=60

This is the maximum number of seconds that Nagios will allow event handlers to be run. If an event handler

exceeds this time limit it will be killed and a warning will be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch
mechanism to kill off commands which are misbehaving and not exiting in a timely manner. It should be set to
something high (like 60 seconds or more), so that each event handler command normally finishes executing
within this time limit. If an event handler runs longer than this limit, Nagios will kill it off thinking it is a runaway
processes.

Notification Timeout

Format: notification_timeout=<seconds>
Example: notification_timeout=60

This is the maximum number of seconds that Nagios will allow notification commands to be run. If a notification
command exceeds this time limit it will be killed and a warning will be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch
mechanism to kill off commands which are misbehaving and not exiting in a timely manner. It should be set to
something high (like 60 seconds or more), so that each notification command finishes executing within this time
limit. If a notification command runs longer than this limit, Nagios will kill it off thinking it is a runaway processes.

Obsessive Compulsive Service Processor Timeout

Format: ocsp_timeout=<seconds>
Example: ocsp_timeout=5

This is the maximum number of seconds that Nagios will allow an obsessive compulsive service processor
command to be run. If a command exceeds this time limit it will be killed and a warning will be logged.

Performance Data Processor Command Timeout

Format: perfdata_timeout=<seconds>
Example: perfdata_timeout=5

This is the maximum number of seconds that Nagios will allow a host performance data processor command or
service performance data processor command to be run. If a command exceeds this time limit it will be killed
and a warning will be logged.

Obsess Over Services Option

Format: obsess_over_services=<0/1>

Example: obsess_over_services=1

This value determines whether or not Nagios will "obsess" over service checks results and run the obsessive
compulsive service processor command you define. I know - funny name, but it was all I could think of. This
option is useful for performing distributed monitoring. If you're not doing distributed monitoring, don't enable this
option.

● 0 = Don't obsess over services (default)
● 1 = Obsess over services

Obsessive Compulsive Service Processor Command

Format: ocsp_command=<command>
Example: ocsp_command=obsessive_service_handler

This option allows you to specify a command to be run after every service check, which can be useful in
distributed monitoring. This command is executed after any event handler or notification commands. The
command argument is the short name of a command definition that you define in your host configuration file.
The maximum amount of time that this command can run is controlled by the ocsp_timeout option. More
information on distributed monitoring can be found here.

Performance Data Processing Option

Format: process_performance_data=<0/1>
Example: process_performance_data=1

This value determines whether or not Nagios will process host and service check performance data.

● 0 = Don't process performance data (default)
● 1 = Process performance data

Orphaned Service Check Option

Format: check_for_orphaned_services=<0/1>
Example: check_for_orphaned_services=0

This option allows you to enable or disable checks for orphaned service checks. Orphaned service checks are
checks which ahve been executed and have been removed from the event queue, but have not had any results
reported in a long time. Since no results have come back in for the service, it is not rescheduled in the event
queue. This can cause service checks to stop being executed. Normally it is very rare for this to happen - it
might happen if an external user or process killed off the process that was being used to execute a service
check. If this option is enabled and Nagios finds that results for a particular service check have not come back,

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/confighost.html#command

it will log an error message and reschedule the service check. If you start seeing service checks that never
seem to get rescheduled, enable this option and see if you notice any log messages about orphaned services.

● 0 = Don't check for orphaned service checks (default)
● 1 = Check for orphaned service checks

Service Freshness Checking Option

Format: check_service_freshness=<0/1>
Example: check_service_freshness=0

This option determines whether or not Nagios will periodically check the "freshness" of service checks.
Enabling this option is useful for helping to ensure that passive service checks are received in a timely manner.
More information on freshness checking can be found here.

● 0 = Don't check service freshness
● 1 = Check service freshness (default)

Service Freshness Check Interval

Format: freshness_check_interval=<seconds>
Example: freshness_check_interval=60

This setting determines how often (in seconds) Nagios will periodically check the "freshness" of service check
results. If you have disabled service freshness checking (with the check_service_freshness option), this option
has no effect. More information on freshness checking can be found here.

Illegal Object Name Characters

Format: illegal_object_name_chars=<chars...>
Example: illegal_object_name_chars=`~!$%^&*"|'<>?,()=

This options allows you to specify illegal characters that cannot be used in host names, service descriptions, or
names of other object types. Nagios will allow you to use most characters in object definitions, but I recommend
not using the characters shown in the example above. Doing may give you problems in the web interface,
notification commands, etc.

Illegal Macro Output Characters

Format: illegal_macro_output_chars=<chars...>
Example: illegal_macro_output_chars=`~$^&"|'<>

This options allows you to specify illegal characters that should be stripped from macros before being used in
notifications, event handlers, and other commands. This DOES NOT affect macros used in service or host
check commands. You can choose to not strip out the characters shown in the example above, but I
recommend you do not do this. Some of these characters are interpreted by the shell (i.e. the backtick) and can
lead to security problems. The following macros are stripped of the characters you specify:

$OUTPUT$, $PERFDATA$

Administrator Email Address

Format: admin_email=<email_address>
Example: admin_email=root@localhost.localdomain

This is the email address for the administrator of the local machine (i.e. the one that Nagios is running on). This
value can be used in notification commands by using the $ADMINEMAIL$ macro.

Administrator Pager

Format: admin_pager=<pager_number_or_pager_email_gateway>
Example: admin_pager=pageroot@localhost.localdomain

This is the pager number (or pager email gateway) for the administrator of the local machine (i.e. the one that
Nagios is running on). The pager number/address can be used in notification commands by using the
$ADMINPAGER$ macro.

Object Configuration Data

What is Object Data?

Object data is simply a generic term I use to describe various data definitions you need in order to monitor
anything. Types of object definitions include:

● Services
● Hosts
● Host Groups
● Contacts
● Contact Groups
● Commands
● Time Periods
● Service Escalations
● Service Dependencies
● Host Escalations
● Host Dependencies
● Hostgroup Escalations

How Do You Define Object Data?

That all depends on how you compiled the core program and CGIs. Or more correctly, it depends on what
options you supplied to the configure script before you compiled everything. There are two different methods for
storing object definitions. They are...

● Default (old) method - This is the old style of configuring objects and is provided for backward
compatabilty. I do not recommend using this method for storing object definitions.

● Template-based method - This is the new style of configuring object definitions that is flexible and
easy to understand. You can use templates to define entries for multiple hosts, services, etc quickly and
easily.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xoddefault.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html

CGI Configuration File Options

Notes

When creating and/or editing configuration files, keep the following in mind:

1. Lines that start with a '#' character are taken to be comments and are not processed
2. Variables names must begin at the start of the line - no white space is allowed before the name
3. Variable names are case-sensitive

Sample Configuration

A sample CGI configuration file can be created by running the 'make config' command. The default name of
the CGI configuration file is cgi.cfg.

Index

Main configuration file location
Physical HTML path
URL HTML path

Nagios process check command

Authentication usage
Default user name
System/process information access
System/process command access
Configuration information access
Global host information access
Global host command access
Global service information access
Global service command access

Statusmap CGI background image
Default statusmap layout method
Statuswrl CGI include world
Default statuswrl layout method

CGI refresh rate
Audio alerts

Ping syntax

Main Configuration File Location

Format: main_config_file=<file_name>
Example: main_config_file=/usr/local/nagios/etc/nagios.cfg

This specifies the location of your main configuration file. The CGIs need to know where to find this file in order
to get information about configuration information, current host and service status, etc.

Physical HTML Path

Format: physical_html_path=<path>
Example: physical_html_path=/usr/local/nagios/share

This is the physical path where the HTML files for Nagios are kept on your workstation or server. Nagios
assumes that the documentation and images files (used by the CGIs) are stored in subdirectories called docs/
and images/, respectively.

URL HTML Path

Format: url_html_path=<path>
Example: url_html_path=/nagios

If, when accessing Nagios via a web browser, you point to an URL like http://www.myhost.com/nagios, this
value should be /nagios. Basically, its the path portion of the URL that is used to access the Nagios HTML
pages.

Nagios Process Check Command

Format: nagios_check_command=<command_line>
Example: nagios_check_command=/usr/local/nagios/libexec/check_nagios

/usr/local/nagios/var/status.log 5 '/usr/local/nagios/bin/nagios -d
/usr/local/nagios/etc/nagios.cfg'

This is an optional command that the CGIs can use to check the status of the Nagios process. This provides
the CGIs (as well as yourself) with some idea of whether or not Nagios is still running. If you do not specify a
command to be run, the CGIs will assume that the Nagios process is running. If you do define a process check
command, it should follow the same guidelines that are required of standard plugins. If the command returns a
non-OK status, the CGIs will think the Nagios process is not running and will refuse to allow you to commit any
commands via the command CGI.

Authentication Usage

Format: use_authentication=<0/1>
Example: use_authentication=1

This option controls whether or not the CGIs will use the authentication and authorization functionality when
determining what information and commands users have access to. I would strongly suggest that you use the
authentication functionality for the CGIs. If you decide not to use authentication, make sure to remove the
command CGI to prevent unauthorized users from issuing commands to Nagios. The CGI will not issue
commands to Nagios if authentication is disabled, but I would suggest removing it altogether just to be on the
safe side. More information on how to setup authentication and configure authorization for the CGIs can be
found here.

● 0 = Don't use authentication functionality
● 1 = Use authentication and authorization functionality (default)

Default User Name

Format: default_user_name=<username>
Example: default_user_name=guest

Setting this variable will define a default username that can access the CGIs. This allows people within a
secure domain (i.e., behind a firewall) to access the CGIs without necessarily having to authenticate to the web
server. You may want to use this to avoid having to use basic authentication if you are not using a secure
server, as basic authentication transmits passwords in clear text over the Internet.

Important: Do not define a default username unless you are running a secure web server and are sure that
everyone who has access to the CGIs has been authenticated in some manner! If you define this variable,
anyone who has not authenticated to the web server will inherit all rights you assign to this user!

System/Process Information Access

Format: authorized_for_system_information=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_system_information=nagiosadmin,theboss

This is a comma-delimited list of names of authenticated users who can view system/process information in the
extended information CGI. Users in this list are not automatically authorized to issue system/process
commands. If you want users to be able to issue system/process commands as well, you must add them to the
authorized_for_system_commands variable. More information on how to setup authentication and configure
authorization for the CGIs can be found here.

System/Process Command Access

Format: authorized_for_system_commands=<user1>,<user2>,<user3>,...<usern>

Example: authorized_for_system_commands=nagiosadmin

This is a comma-delimited list of names of authenticated users who can issue system/process commands via
the command CGI. Users in this list are not automatically authorized to view system/process information. If you
want users to be able to view system/process information as well, you must add them to the
authorized_for_system_information variable. More information on how to setup authentication and configure
authorization for the CGIs can be found here.

Configuration Information Access

Format: authorized_for_configuration_information=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_configuration_information=nagiosadmin

This is a comma-delimited list of names of authenticated users who can view configuration information in the
configuration CGI. Users in this list can view information on all configured hosts, host groups, services,
contacts, contact groups, time periods, and commands. More information on how to setup authentication and
configure authorization for the CGIs can be found here.

Global Host Information Access

Format: authorized_for_all_hosts=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_all_hosts=nagiosadmin,theboss

This is a comma-delimited list of names of authenticated users who can view status and configuration
information for all hosts. Users in this list are also automatically authorized to view information for all services.
Users in this list are not automatically authorized to issue commands for all hosts or services. If you want users
able to issue commands for all hosts and services as well, you must add them to the
authorized_for_all_host_commands variable. More information on how to setup authentication and configure
authorization for the CGIs can be found here.

Global Host Command Access

Format: authorized_for_all_host_commands=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_all_host_commands=nagiosadmin

This is a comma-delimited list of names of authenticated users who can issue commands for all hosts via the
command CGI. Users in this list are also automatically authorized to issue commands for all services. Users in
this list are not automatically authorized to view status or configuration information for all hosts or services. If
you want users able to view status and configuration information for all hosts and services as well, you must
add them to the authorized_for_all_hosts variable. More information on how to setup authentication and
configure authorization for the CGIs can be found here.

Global Service Information Access

Format: authorized_for_all_services=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_all_services=nagiosadmin,theboss

This is a comma-delimited list of names of authenticated users who can view status and configuration
information for all services. Users in this list are not automatically authorized to view information for all hosts.
Users in this list are not automatically authorized to issue commands for all services. If you want users able to
issue commands for all services as well, you must add them to the authorized_for_all_service_commands
variable. More information on how to setup authentication and configure authorization for the CGIs can be
found here.

Global Service Command Access

Format: authorized_for_all_service_commands=<user1>,<user2>,<user3>,...<usern>
Example: authorized_for_all_service_commands=nagiosadmin

This is a comma-delimited list of names of authenticated users who can issue commands for all services via the
command CGI. Users in this list are not automatically authorized to issue commands for all hosts. Users in this
list are not automatically authorized to view status or configuration information for all hosts. If you want users
able to view status and configuration information for all services as well, you must add them to the
authorized_for_all_services variable. More information on how to setup authentication and configure
authorization for the CGIs can be found here.

Statusmap CGI Background Image

Format: statusmap_background_image=<gd2_image>
Example: statusmap_background_image=statusmapbg.gd2

This option allows you to specify an image to be used as a background in the statusmap CGI. It is assumed
that the image resides in the HTML images path (i.e. /usr/local/nagios/share/images). This path is automatically
determined by appending "/images" to the path specified by the physical_html_path directive. Note: The image
file must be in GD2 format (preferably in uncompressed format)!

Default Statusmap Layout Method

Format: default_statusmap_layout=<layout_number>
Example: default_statusmap_layout=4

This option allows you to specify the default layout method used by the statusmap CGI. Valid options are:

<layout_number> Value Layout Method

0 User-defined coordinates

1 Depth layers

2 Collapsed tree

3 Balanced tree

4 Circular

5 Circular (Marked Up)

6 Circular (Balloon)

Statuswrl CGI Include World

Format: statuswrl_include=<vrml_file>
Example: statuswrl_include=myworld.wrl

This option allows you to include your own objects in the generated VRML world. It is assumed that the file
resides in the path specified by the physical_html_path directive. Note: This file must be a fully qualified VRML
world (i.e. you can view it by itself in a VRML browser).

Default Statuswrl Layout Method

Format: default_statuswrl_layout=<layout_number>
Example: default_statuswrl_layout=4

This option allows you to specify the default layout method used by the statuswrl CGI. Valid options are:

<layout_number> Value Layout Method

0 User-defined coordinates

2 Collapsed tree

3 Balanced tree

4 Circular

CGI Refresh Rate

Format: refresh_rate=<rate_in_seconds>
Example: refresh_rate=90

This option allows you to specify the number of seconds between page refreshes for the status, statusmap, and
extinfo CGIs.

Audio Alerts

Formats: host_unreachable_sound=<sound_file>
host_down_sound=<sound_file>
service_critical_sound=<sound_file>
service_warning_sound=<sound_file>
service_unknown_sound=<sound_file>

Examples: host_unreachable_sound=hostu.wav
host_down_sound=hostd.wav
service_critical_sound=critical.wav
service_warning_sound=warning.wav
service_unknown_sound=unknown.wav

These options allow you to specify an audio file that should be played in your browser if there are problems
when you are viewing the status CGI. If there are problems, the audio file for the most critical type of problem
will be played. The most critical type of problem is on or more unreachable hosts, while the least critical is one
or more services in an unknown state (see the order in the example above). Audio files are assumed to be in
the media/ subdirectory in your HTML directory (i.e. /usr/local/nagios/share/media).

Ping Syntax

Format: ping_syntax=<command>
Example: ping_syntax=/bin/ping -n -U -c 5 $HOSTADDRESS$

This option determines what syntax should be used when attempting to ping a host from the WAP interface
(using the statuswml CGI. You must include the full path to the ping binary, along with all required options. The
$HOSTADDRESS$ macro is substituted with the address of the host before the command is executed.

Authentication And Authorization In The CGIs

Notes

Throughout these instructions I will be assuming that you are running the Apache web server on your machine.
If you are running some other web server, you will have to make some adjustments.

Definitions

Throughout these instructions I will be using the following terms, so you should understand what they mean...

● An authenticated user is an someone who has authenticated to the web server with a username and
password and has been granted access to the CGIs by the web server

● An authenticated contact is an authenticated user whose username matches the short name of a
contact definition in your object configuration file(s).

Index

Configuring web server authentication
Setting up authenticated users
Enabling authentication/authorization functionality in the CGIs
Default permissions to CGI information
Granting additional permissions to CGI information
Authentication on secure web servers

Configuring Web Server Authentication

The first step to configuring your web server for authentication is to make sure the web server configuration file
(i.e. httpd.conf) file contains an 'AuthOverride AuthConfig' statement in it for the Nagios CGI-BIN directory. If
it doesn't, you'll have to add something similiar to the following to your web server configuration file. Note that
you will have to restart the web server in order for this change to take effect.

<Directory /usr/local/nagios/sbin>
AllowOverride AuthConfig
order allow,deny
allow from all
Options ExecCGI
</Directory>

If you also want to require authentication for access the HTML pages for Nagios, add something similiar to the
following in the web server configuration file as well.

http://www.apache.org/

<Directory /usr/local/nagios/share>
AllowOverride AuthConfig
order allow,deny
allow from all
</Directory>

The second step is to create a file named .htaccess in the root your CGI directory (and optionally also you
HTML directory) for Nagios (usually /usr/local/nagios/sbin and /usr/local/nagios/share, respectively). The file(s)
should have contents similiar to the following...

AuthName "Nagios Access"
AuthType Basic
AuthUserFile /usr/local/nagios/etc/htpasswd.users
require valid-user

Setting Up Authenticated Users

Now that you've configured the web server to require authentication for access to the CGIs, you'll need to
configure users who can acess the CGIs. This is done by using the htpasswd command supplied with Apache.

Running the following command will create a new file called htpasswd.users in the /usr/local/nagios/etc
directory. It will also create an username/password entry for nagiosadmin. You will be asked to provide a
password that will be used when nagiosadmin authenticates to the web server.

htpasswd -c /usr/local/nagios/etc/htpasswd.users nagiosadmin

Continue adding more users until you've created an account for everyone you want to access the CGIs. Use
the following command to add additional users, replacing <username> with the actual username you want to
add. Note that the -c option is not used, since you already created the initial file.

htpasswd /usr/local/nagios/etc/htpasswd.users <username>

Okay, so you're done with the first part of what needs to be done. If you point your web browser to your Nagios
CGIs you should be asked for a username and password. If you have problems getting user authentication to
work at this point, read your webserver documentation for more info.

Enabling Authentication/Authorization Functionality In The CGIs

The next thing you need to do is make sure that the CGIs are configured to use the authentication and
authorization functionality in determining what information and/or commands users have access to. This is
done be setting the use_authentication variable in the CGI configuration file to a non-zero value. Example:

use_authentication=1

Okay, you're now done with setting up basic authentication/authorization functionality in the CGIs.

Default Permissions To CGI Information

So what default permissions do users have in the CGIs by default when the authentication/authorization
functionality is enabled?

CGI Data Authenticated Contacts* Other Authenticated Users*

Host Status Information Yes No

Host Configuration Information Yes No

Host History Yes No

Host Notifications Yes No

Host Commands Yes No

Service Status Information Yes No

Service Configuration Information Yes No

Service History Yes No

Service Notifications Yes No

Service Commands Yes No

All Configuration Information No No

System/Process Information No No

System/Process Commands No No

Authenticated contacts* are granted the following permissions for each service for which they are contacts (but
not for services for which they are not contacts)...

● Authorization to view service status information
● Authorization to view service configuration information
● Authorization to view history and notifications for the service
● Authorization to issue service commands

Authenticated contacts* are granted the following permissions for each host for which they are contacts (but
not for hosts for which they are not contacts)...

● Authorization to view host status information
● Authorization to view host configuration information
● Authorization to view history and notifications for the host
● Authorization to issue host commands
● Authorization to view status information for all services on the host
● Authorization to view configuration information for all services on the host
● Authorization to view history and notification information for all services on the host
● Authorization to issue commands for all services on the host

It is important to note that by default no one is authorized for the following...

● Viewing the raw log file via the showlog CGI
● Viewing Nagios process information via the extended information CGI
● Issuing Nagios process commands via the command CGI
● Viewing host group, contact, contact group, time period, and command definitions via the configuration

CGI
●

You will undoubtably want to access this information, so you'll have to assign additional rights for yourself (and
possibly other users) as described below...

Granting Additional Permissions To CGI Information

You can grant authenticated contacts or other authenticated users permission to additional information in the
CGIs by adding them to various authorization variables in the CGI configuration file. I realize that the available
options don't allow for getting really specific about particular permissions, but its better than nothing..

Additional authorization can be given to users by adding them to the following variables in the CGI configuration
file...

● authorized_for_system_information
● authorized_for_system_commands
● authorized_for_configuration_information
● authorized_for_all_hosts
● authorized_for_all_host_commands
● authorized_for_all_services
● authorized_for_all_service_commands

CGI Authorization Requirements

If you are confused about the authorization needed to access various information in the CGIs, read the
Authorization Requirements section for each CGI as described here.

Authentication On Secured Web Servers

If your web server is located in a secure domain (i.e., behind a firewall) or if you are using SSL, you can define
a default username that can be used to access the CGIs. This is done by defining the default_user_name
option in the CGI configuration file. By defining a default username that can access the CGIs, you can allow
users to access the CGIs without necessarily having to authenticate to the web server.. You may want to use
this to avoid having to use basic web authentication, as basic authentication transmits passwords in clear text
over the Internet.

Important: Do not define a default username unless you are running a secure web server and are sure that
everyone who has access to the CGIs has been authenticated in some manner! If you define this variable,
anyone who has not authenticated to the web server will inherit all rights you assign to this user!

Extended Information Configuration

What is Extended Information?

Extended information consists of optional definitions for hosts and services that is used by the CGIs in the
following ways:

● to provide URLs to additional information about the host or service
● to add pretty icons to the hosts and services displayed in the web interface
● to draw hosts in the statusmap and statuswrl CGIs at user-defined 2-D and 3-D coordinates

Where is Extended Information Defined?

That all depends on how you compiled the CGIs. Or more correctly, it depends on what options you supplied to
the configure script before you compiled everything. There are several different methods for storing extended
information definitions. They are as follows...

● Default (old) method - Definitions are stored in the CGI config file. This method is provided for
backward compatabilty. I recommend that you use one of the methods described below.

● Template-based method - Definitions are stored in seperate configuration files. You can use templates
to define entries for multiple hosts and services quickly and easily.

● Database method - Definitions are stored in a database.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xeddefault.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xedtemplate.html

Verifying Your Nagios Configuration

Verifying The Configuration From The Command Line

Once you've entered all the necessary data into the configuration files, its time to do a sanity check. Everyone
make mistakes from time to time, so its best to verify what you've entered. Nagios automatically runs a "pre-
flight check" before before it starts monitoring, but you also have the option of running this check manually
before attempting to start Nagios. In order to do this, you must start Nagios with the -v command line argument
as follows...

/usr/local/nagios/bin/nagios -v <main_config_file>

Note that you should be entering the path/filename of your main configuration file (i.e.
/usr/local/nagios/etc/nagios.cfg) as the second argument. Nagios will read your main configuration file and all
object configuration files and verify that they contain valid data.

Relationships Verified During The Pre-Flight Check

During the "pre-flight check", Nagios verifies that you have defined the data relationships necessary for
monitoring. Objects are all related and need to be setup properly in order for things to run. This is a list of the
basic things that Nagios attempts to check before it will start monitoring...

1. Verify that all contacts are a member of at least one contact group.
2. Verify that all contacts specified in each contact group are valid.
3. Verify that all hosts are a member of at least one host group.
4. Verify that all hosts specified in each host group are valid.
5. Verify that all hosts have at least one service associated with them.
6. Verify that all commands used in service and host checks are valid.
7. Verify that all commands used in service and host event handlers are valid.
8. Verify that all commands used in contact service and host notifications are valid.
9. Verify that all notification time periods specified for services, hosts, and contact are valid.

10. Verify that all service check time periods specified for services are valid.

Fixing Configuration Errors

If you've forgotten to enter some critical data or just plain screwed things up, Nagios will spit out a warning or
error message that should point you to the location of the problem. Error messages generally print out the line
in the configuration file that seems to be the source of the problem. On errors, Nagios will often exit the pre-
flight check and return to the command prompt after printing only the first error that it has encountered. This is
done so that one error does not cascade into multiple errors as the remainder of the configuration data is
verified. If you get any error messages you'll need to go and edit your configuration files to remedy the problem.
Warning messages can generally be safely ignored, since they are only recommendations and not
requirements.

Where To Go From Here

Once you've verified your configuration files and fixed any errors, you can be reasonably sure that Nagios will
start monitoring the services you've specified. On to starting Nagios!

Starting Nagios

IMPORTANT: Before you actually start Nagios, you'll have to make sure that you have configured it properly
and verified the config data!

Methods For Starting Nagios

There are basically four different ways you can start Nagios:

1. Manually, as a foreground process (useful for initial testing and debugging)
2. Manually, as a background process
3. Manually, as a daemon
4. Automatically at system boot

Let's examine each method briefly...

Running Nagios Manually as a Foreground Process

If you enabled the debugging options when running the configure script (and recompiled Nagios), this would be
your first choice for testing and debugging. Running Nagios as a foreground process at a shell prompt will allow
you to more easily view what's going on in the monitoring and notification processes. To run Nagios as a
foreground process for testing, invoke Nagios like this...

/usr/local/nagios/bin/nagios <main_config_file>

Note that you must specify the path/filename of the main configuration file (i.e. /usr/local/nagios/etc/nagios.cfg)
on the command line.

To stop Nagios at any time, just press CTRL-C. If you've enabled the debugging options you'll probably want to
redirect the output to a file for easier review later.

Running Nagios Manually as a Background Process

To run Nagios as a background process, invoke it with an ampersand as follows...

/usr/local/nagios/bin/nagios <main_config_file> &

Note that you must specify the path/filename of the main configuration file (i.e. /usr/local/nagios/etc/nagios.cfg)
on the command line.

Running Nagios Manually as a Daemon

In order to run Nagios in daemon mode you must supply the -d switch on the command line as follows...

/usr/local/nagios/bin/nagios -d <main_config_file>

Note that you must specify the path/filename of the main configuration file (i.e. /usr/local/nagios/etc/nagios.cfg)
on the command line.

Running Nagios Automatically at System Boot

When you have tested Nagios and are reasonably sure that it is not going to crash, you will probably want to
have it start automatically at boot time. To do this (in Linux) you will have to create a startup script in your
/etc/rc.d/init.d/ directory. You will also have to create a link to the script in the runlevel(s) that you wish to have
Nagios to start in. I'll assume that you know what I'm talking about and are able to do this.

A sample init script (named daemon-init) is created in the base directory of the Nagios distribution when you
run the configure script. You can install the sample script to your /etc/rc.d/init.d directory using the 'make install-
init' command, as outlined in the installation instructions.

The sample init scripts are designed to work under Linux, so if you want to use them under FreeBSD, Solaris,
etc. you may have to do a little hacking...

Stopping and Restarting Nagios

Directions on how to stop and restart Nagios can be found here.

Stopping And Restarting Nagios

Once you have Nagios up and running, you may need to stop the process or reload the configuration data "on the fly". This
section describes how to do just that.

IMPORTANT: Before you restart Nagios, make sure that you have verified the configuration data using the -v command line
switch, especially if you have made any changes to your config files. If Nagios encounters problem with one of the config files
when it restarts, it will log an error and terminate.

Stopping And Restarting With The Init Script

If you have installed the sample init script to your /etc/rc.d/init.d directory you can stop and restart Nagios easily. If you haven't,
skip this section and read how to do it manually below. I'll assume that you named the init script Nagios in the examples below...

Desired Action Command Description
Stop Nagios /etc/rc.d/init.d/nagios stop This kills the Nagios process

Restart Nagios /etc/rc.d/init.d/nagios restart This kills the current Nagios process and then starts Nagios up again

Reload Configuration Data /etc/rc.d/init.d/nagios reload
Sends a SIGHUP to the Nagios process, causing it to flush its
current configuration data, reread the configuration files, and start
monitoring again

Stopping, restarting, and reloading Nagios are fairly simple with an init script and I would highly recommend you use one if at all
possible.

Stopping and Restarting Nagios Manually

If you aren't using an init script to start Nagios, you'll have to do things manually. First you'll have to find the process ID that
Nagios is running under and then you'll have to use the kill command to terminate the application or make it reload the
configuration data by sending it the proper signal. Directions for doing this are outlined below...

Finding The Nagios Process ID

First off, you will need to know the process id that Nagios is running as. To do that, just type the following command at a shell
prompt:

ps axu | grep nagios

The output should look something like this:

nagios 6808 0.0 0.7 840 352 p3 S 13:44 0:00 grep nagios
nagios 11149 0.2 1.0 868 488 ? S Feb 27 6:33 /usr/local/nagios/bin/nagios nagios.cfg

From the program output, you will notice that Nagios was started by user nagios and is running as process id 11149.

Manually Stopping Nagios

In order to stop Nagios, use the kill command as follows...

kill 11149

You should replace 11149 with the actual process id that Nagios is running as on your machine.

Manually Restarting Nagios

If you have modified the configuration data, you will want to restart Nagios and have it re-read the new configuration. If you have
changed the source code and recompiled the main Nagios executable you should not use this method. Instead, stop Nagios by
killing it (as outlined above) and restart it manually. Restarting Nagios using the method below does not actually reload Nagios - it
just causes Nagios to flush its current configuration, re-read the new configuration, and start monitoring all over again. To restart
Nagios, you need to send the SIGHUP signal to Nagios. Assuming that the process id for Nagios is 11149 (taken from the
example above), use the following command:

kill -HUP 11149

Remember, you will need to replace 11149 with the actual process id that Nagios is running as on your machine.

Nagios Plugins

What Are Plugins?

Plugins are compiled executables or scripts (Perl, shell, etc.) that can be run from a command line to check the
status or a host or service. Nagios uses the results from plugins to determine the current status or hosts and
services on your network. No, you can't get away without using plugins - Nagios is useless without them.

Obtaining Plugins

Plugin development for Nagios is being done at SourceForge. The Nagios plugin development project page
(where the latest version of by plugins can always be found) is located at
http://sourceforge.net/projects/nagiosplug/.

How Do I Use Plugin X?

Documentation on how to use individual plugins is not supplied with the core Nagios distribution. You should
refer to the latest plugin distribution for information on using plugins. Karl DeBisschop, lead plugin
developer/maintainer points out the following:

All plugins that comply with minimal development guideline for this project include internal
documentation. The documentation can be read executing plugin with the '-h' option ('--help' if long
options are enabled). If the '-h' option does not work, that is a bug.

For example, if you want to know how the check_http plugin works or what options it accepts, you should try
executing either:

./check_httpd --help

or

./check_httpd --h

Command Definition Examples For Services

It is important to note that command definitions found in sample config files in the core Nagios distribution are
probably not accurate as to command line parameters, etc when it comes to the plugins. They are simply
provided as examples of how to define commands.

Creating Custom Plugins

Creating your own plugins to perform custom host or service checks is easy. You can find information on how

http://sourceforge.net/projects/nagiosplug/

to write plugins at http://sourceforge.net/projects/nagiosplug/ .

http://sourceforge.net/projects/nagiosplug/

Nagios Addons

The following is a description of various "addons" that are available for Nagios. These and other addons can be
obtained from the downloads page on the Nagios website (www.nagios.org).

Index

nrpe - Daemon and plugin for executing plugins on remote hosts
nsca - Daemon and client program for sending passive check results across the network

nrpe - Daemon and plugin for executing plugins on remote hosts

Author: Me

Overview: Allows you to execute plugins on remote hosts in a relatively easy and transparent manner.
Files: check_nrpe - Plugin used to send execution requests to the nrpe agent on the remote host

nrpe - Agent that runs on the remote host and processes plugin execution requests
nrpe.cfg - Configuration file for the remote host agent

Description: This addon is designed to provide a way for executing plugins on a remote host. The
check_nrpe plugin runs on the Nagios host and is used to send plugin execution requests to the
nrpe agent on the remote host. The nrpe agent will then run an appropriate plugins on the
remote host and return the plugin output and return code to the check_nrpe plugin on the
Nagios host. The check_nrpe plugin then passes the remote plugin's output and return code
back to Nagios as if it were its own. This allows for a rather transparent method of executing
plugins on remote hosts. The nrpe agent can either be run as a standalone daemon or as a
service under inetd.

Notes: ● When running in daemon mode, the nrpe agent authenticates plugin execution requests
by doing a rudimentary comparison of the IP address of the calling host against a list of
allowed IP addresses in the configuration file.

● When running under inetd, TCP wrappers can be employed to restrict access to the nrpe
agent

nsca - Daemon and client program for sending passive check results across the network

Author: Me

Overview: Allows you to submit passive service checks results to another server on the network that is
running Nagios.

http://www.nagios.org/
mailto:netsaint@netsaint.org
mailto:netsaint@netsaint.org

Files:
nsca - Daemon that runs on the central Nagios server and processes passive service

check results submitted by clients
nsca.cfg - Configuration file for the nsca daemon

send_nsca - Client program that is executed from remote hosts and sends passive service
check information to the nsca daemon on the central Nagios server

send_nsca.cfg - Configuration file for the send_nsca client

Description: This addon allows you to send passive service check results from remote hosts to a central
monitoring host that runs Nagios. The client can be used as a standalone program or can be
integrated with remote Nagios servers that run an ocsp command to setup a distributed
monitoring environment. Communication between the client and daemon can be encrypted via
various algorithms (DES, 3DES, CAST, xTEA, Twofish, LOKI97, RJINDAEL, SERPENT, GOST,
SAFER/SAFER+, etc.) if you have the mcrypt libraries installed on your systems.

http://mcrypt.hellug.gr/

Determining Status and Reachability of Network Hosts

Monitoring Services on Down or Unreachable Hosts

The main purpose of Nagios is to monitor services that run on or are provided by physical hosts or devices on your network. It should be obvious that if a host or
device on your network goes down, all services that it offers will also go down with it. Similarly, if a host becomes unreachable, Nagios will not be able to monitor
the services associated with that host.

Nagios recognizes this fact and attempts to check for such a scenario when there are problems with a service. Whenever a service check results in a non-OK
status level, Nagios will attempt to check and see if the host that the service is running on is "alive". Typically this is done by pinging the host and seeing if any
response is received. If the host check commmand returns a non-OK state, Nagios assumes that there is a problem with the host. In this situation Nagios will
"silence" all potential alerts for services running on the host and just notify the appropriate contacts that the host is down or unreachable. If the host check
command returns an OK state, Nagios will recognize that the host is alive and will send out an alert for the service that is misbehaving.

Local Hosts

"Local" hosts are hosts that reside on the same network segment as the host running Nagios - no routers or firewalls lay between them. Figure 1 shows an example
network layout. Host A is running Nagios and monitoring all other hosts and routers depicted in the diagram. Hosts B, C, D, E and F are all considered to be "local"
hosts in relation to host A.

The <parent_hosts> option in the host definition for a "local" host should be left blank, as local hosts have no depencies or "parents" - that's why they're local.

Monitoring Local Hosts

Checking hosts that are on your local network is fairly simple. Short of someone accidentally (or intentially) unplugging the network cable from one of your hosts,
there isn't too much that can go wrong as far as checking network connectivity is concerned. There are no routers or external networks between the host doing the
monitoring and the other hosts on the local network.

If Nagios needs to check to see if a local host is "alive" it will simply run the host check command for that host. If the command returns an OK state, Nagios
assumes the host is up. If the command returns any other status level, Nagios will assume the host is down.

Figure 1.

Remote Hosts

"Remote" hosts are hosts that reside on a different network segment than the host running Nagios. In the figure above, hosts G, H, I, J, K, L and M are all
considered to be "remote" hosts in relation to host A.

Notice that some hosts are "farther away" than others. Hosts H, I and J are one hop further away from host A than host G (the router) is. From this observation we
can construct a host dependency tree as show below in Figure 2. This tree diagram will help us in deciding how to configure each host in Nagios.

The <parent_hosts> option in the host definition for a "remote" host should be the short name(s) of the host(s) directly above it in the tree diagram (as show
below). For example, the parent host for host H would be host G. The parent host for host G is host F. Host F has no parent host, since it is on the network
segment as host A - it is a "local" host.

Figure 2.

Monitoring Remote Hosts

Checking the status of remote hosts is a bit more complicated that for local hosts. If Nagios cannot monitor services on a remote host, it needs to determine
whether the remote host is down or whether it is unreachable. Luckily, the <parent_hosts> option allows Nagios to do this.

If a host check command for a remote host returns a non-OK state, Nagios will "walk" the depency tree (as shown in the figure above) until it reaches the top (or
until a parent host check results in an OK state). By doing this, Nagios is able to determine if a service problem is the result of a down host, an down network link,
or just a plain old service failure.

DOWN vs. UNREACHABLE Notification Types

I get lots of email from people asking why Nagios is sending notifications out about hosts that are unreachable. The answer is because you configured it to do that.
If you want to disable UNREACHABLE notifications for hosts, modify the notification_options argument of your host definitions to not include the u (unreachable)
option. More information can be found in this FAQ.

Network Outages

Introduction

The outages CGI is designed to help pinpoint the cause of network outages. For small networks this CGI may
not be particularly useful, but for larger ones it will be. Pinpointing the cause of outages will help admins to
more quickly find and resolve problems which are causing the biggest impact on the network.

It should be noted that the outages CGI will not attempt to find the exact cause of the problem, but will rather
locate the hosts on your network which seem to be causing the most problems. Delving into the problem at a
deeper level is left to the user, as there are any number of things which might actually be the cause of the
problem.

Diagrams

The diagrams below help to show how the outages CGI goes about determining the cause of network outages.
You can click on either image for a larger version...

Diagram 1

This diagram will serve as the basis for our example. All hosts shows in red are either down or
unreachable (from the view of Nagios). All other hosts are up.

Diagram 2

This diagram pinpoints the causes of the network outages (from the view of Nagios), and shows various
groups of hosts which are affected by the outages.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/network-outage1.jpg
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/network-outage2.jpg

Determining The Cause Of Network Outages

So how does the outages CGI determine which hosts are the source of problems? "Problem" hosts must be
either in a DOWN or UNREACHABLE state and at least one of their immediate parent hosts must be UP.
Hosts which fit this criteria are flagged as being potential problem hosts.

In order to determine whether these flagged hosts are causing network outages, we must performs some other
tests...

If all of the immediate child hosts of one of these flagged hosts is DOWN or UNREACHABLE and has no
immediate parent host that is up, the flagged host is the cause of a network outage. If even one of the
immediate children of a flagged host does not pass this test, then the flagged host is not the cause of a network
outage.

Determining The Effects Of Network Outages

Along with telling you what hosts are causing problem on your network, the outages CGI will also tell you how
many hosts and services are affected by a particular problem host. How is this determined? Take a look at
diagram 2 above...

From the diagram it is clear that host 1 is blocking two child hosts (in domain A). Host 2 is solely responsbile for
blocking only itself (domain B) and host 3 is solely responsibly for blocking 7 hosts (domain C). The outage
effects of the two hosts in domain D are "shared" between hosts 2 and 3, since it is unclear as to which host is
actually the cause of the outage. If either host 2 or 3 was UP, the these hosts might not be blocked.

The numbers of affected hosts for each problem host are as follows (the problem host is also included in these
figures):

● Host 1: 3 affected hosts
● Host 2: 3 affected hosts
● Host 3: 10 affected hosts

Ranking Problems Based On Severity Level

The outages CGI will display all problem hosts, whether they are causing network outages or not. However, the
CGI will tell you how many of the problem hosts (if any) are causing network outages.

In order to display the problem hosts in a somewhat useful manner, they are sorted by the severity of the effect
they are having on the network. The severity level is determined by two things: The number of hosts which are
affected by problem host and the number of services which are affected. Hosts hold a higher weight than
services when it comes to calculating severity. The current code sets this weight ratio at 4:1 (i.e. hosts are 4
times more important than individual services).

Assuming that all hosts in diagram 2 have an equal number of services associated with them, host 3 would be
ranked as the most severe problem, while hosts 1 and 2 would have the same severity level.

Notifications

Introduction

I've had a lot of questions as to exactly how notifications work. This will attempt to explain exactly when and
how host and service notifications are sent out, as well as who receives them.

Index

When do notifications occur?
Who gets notified?
What filters must be passed in order for notifications to be sent?
What aren't any notification methods incorporated directly into Nagios?
Helpful resources

When Do Notifications Occur?

The decision to send out notifications is made in the service check and host check logic. Host and service
notifications occur in the following instances...

● When a hard state change occurs. More information on state types and hard state changes can be
found here.

● When a host or service remains in a hard non-OK state and the time specified by the
<notification_interval> option in the host or service definition has passed since the last notification was
sent out (for that specified host or service). If you don't like the idea of recurring notifications, set the
<notification_interval> value to 0 - this prevents notifications from getting sent out more than once for
any given problem.

Who Gets Notified?

Each service definition has a <contact_groups> option that specifies what contact groups receive notifications
for that particular service. Each contact group can contain one or more individual contacts. When Nagios sends
out a service notification, it will notify each contact that is a member of any contact groups specified in the
<contactgroups> option of the service definition. Nagios realizes that any given contact may be a member of
more than one contact group, so it removes duplicate contact notifications before it does anything.

Each host may belong to one or more host groups. Each host group has a <contact_groups> option that
specifies what contact groups receive notifications for hosts in that particular host group. When Nagios sends
out a host notification, it will notify contacts that are members of all the contact groups that that should be
notified for any and all host groups that the host is a member of. Nagios removes any duplicate contacts from
the notification list before it does anything.

What Filters Must Be Passed In Order For Notifications To Be Sent?

Just because there is a need to send out a host or service notification doesn't mean that any contacts are going
to get notified. There are several filters that potential notifications must pass before they are deemed worthy
enough to be sent out. Even then, specific contacts may not be notified if their notification filters do not allow for
the notification to be sent to them. Let's go into the filters that have to be passed in more detail...

Program-Wide Filter:

The first filter that notifications must pass is a test of whether or not notifications are enabled on a program-
wide basis. This is initially determined by the enable_notifications directive in the main config file, but may be
changed during runtime from the web interface. If notifications are disabled on a program-wide basis, no host or
service notifications can be sent out - period. If they are enabled on a program-wide basis, there are still other
tests that must be passed...

Service and Host Filters:

The first filter for host or service notifications is a check to see if the host or service is in a period of scheduled
downtime. It it is in a scheduled downtime, no one gets notified. If it isn't in a period of downtime, it gets
passed on to the next filter. As a side note, notifications for services are supressed if the host they're
associated with is in a period of scheduled downtime.

The second filter for host or service notification is a check to see if the host or service is flapping (if you enabled
flap detection). If the service or host is currently flapping, no one gets notified. Otherwise it gets passed to the
next filter.

The third host or service filter that must be passed is the host- or service-specific notification options. Each
service definition contains options that determine whether or not notifications can be sent out for warning
states, critical states, and recoveries. Similiarly, each host definition contains options that determine whether or
not notifications can be sent out when the host goes down, becomes unreachable, or recovers. If the host or
service notification does not pass these options, no one gets notified. If it does pass these options, the
notification gets passed to the next filter... Note: Notifications about host or service recoveries are only sent out
if a notification was sent out for the original problem. It doesn't make sense to get a recovery notification for
something you never knew was a problem.

The fourth host or service filter that must be passed is the time period test. Each host and service definition has
a <notification_period> option that specifies which time period contains valid notification times for the host or
service. If the time that the notification is being made does not fall within a valid time range in the specified time
period, no one gets contacted. If it falls within a valid time range, the notification gets passed to the next
filter... Note: If the time period filter is not passed, Nagios will reschedule the next notification for the host or
service (if its in a non-OK state) for the next valid time present in the time period. This helps ensure that
contacts are notified of problems as soon as possible when the next valid time in time period arrives.

The last set of host or service filters is conditional upon two things: (1) a notification was already sent out about
a problem with the host or service at some point in the past and (2) the host or service has remained in the
same non-OK state that it was when the last notification went out. If these two criteria are met, then Nagios will
check and make sure the time that has passed since the last notification went out either meets or exceeds the
value specified by the <notification_interval> option in the host or service definition. If not enough time has

passed since the last notification, no one gets contacted. If either enough time has passed since the last
notification or the two criteria for this filter were not met, the notification will be sent out! Whether or not it
actually is sent to individual contacts is up to another set of filters...

Contact Filters:

At this point the notification has passed the program mode filter and all host or service filters and Nagios starts
to notify all the people it should. Does this mean that each contact is going to receive the notification? No! Each
contact has their own set of filters that the notification must pass before they receive it. Note: Contact filters are
specific to each contact and do not affect whether or not other contacts receive notifications.

The first filter that must be passed for each contact are the notification options. Each contact definition contains
options that determine whether or not service notifications can be sent out for warning states, critical states,
and recoveries. Each contact definition also contains options that determine whether or not host notifications
can be sent out when the host goes down, becomes unreachable, or recovers. If the host or service notification
does not pass these options, the contact will not be notified. If it does pass these options, the notification
gets passed to the next filter... Note: Notifications about host or service recoveries are only sent out if a
notification was sent out for the original problem. It doesn't make sense to get a recovery notification for
something you never knew was a problem...

The last filter that must be passed for each contact is the time period test. Each contact definition has a
<notification_period> option that specifies which time period contains valid notification times for the contact. If
the time that the notification is being made does not fall within a valid time range in the specified time period,
the contact will not be notified. If it falls within a valid time range, the contact gets notified!

What Aren't Any Notification Methods Incorporated Directly Into Nagios?

I've gotten several questions about why notification methods (paging, etc.) are not directly incorporated into the
Nagios code. The answer is simple - it just doesn't make much sense. The "core" of Nagios is not designed to
be an all-in-one application. If service checks were embedded in Nagios' core it would be very difficult for users
to add new check methods, modify existing checks, etc. Notifications work in a similiar manner. There are a
thousand different ways to do notifications and there are already a lot of packages out there that handle the
dirty work, so why re-invent the wheel and limit yourself to a bike tire? Its much easier to let an external entity
(i.e. a simple script or a full-blown messaging system) do the messy stuff. Some messaging packages that can
handle notifications for pagers and cellphones are listed below in the resource section.

Helpful Resources

There are many ways you could configure Nagios to send notifications out. Its up to you to decide which
method(s) you want to use. Once you do that you'll have to install any necessary software and configure
notification commands in your config files before you can use them. Here are just a few possible notification
methods:

● Email
● Pager
● Phone (SMS)
● WinPopup message

● Yahoo, ICQ, or MSN instant message
● Audio alerts
● etc...

Basically anything you can do from a command line can be tailored for use as a notification command.

If you're interested in sending an alphanumeric notification to your pager or cellphone via email, you may be
find the following information useful. Here are a few links to various messaging service providers' websites that
contain information on how to send alphanumeric messages to pagers and phones...

● AT&T Wireless
● PageNet
● SprintPCS (SMS phones)

If you're looking for an alternative to using email for sending messages to your pager or cellphone, check out
these packages. They could be used in conjuction with Nagios to send out a notification via a modem when a
problem arises. That way you don't have to rely on email to send notifications out (remember, email may *not*
work if there are network problems). I haven't actually tried these packages myself, but others have reported
success using them...

● Gnokii (SMS software for contacting Nokia phones via GSM network)
● QuickPage (alphanumeric pager software)
● Sendpage (paging software)
● SMS Client (command line utility for sending messages to pagers and mobile phones)

If you want to try out a non-traditional method of notification, you might want to mess around with audio alerts. If
you want to have audio alerts played on the monitoring server (with synthesized speech), check out Festival. If
you'd rather leave the monitoring box alone and have audio alerts played on another box, check out the
Network Audio System (NAS) and rplay projects.

Lastly, there in an area in the contrib downloads section on the Nagios homepage for notification scripts that
have been contributed by users. You might find these scripts useful, as they take care of a lot of the dirty work
needed to send out alphanumeric notifications...

http://sap.mobile.att.net/mc/email.html
http://www.pagenet.com/sendamessage/emailpage.asp
http://www.messaging.sprintpcs.com/sms_help/send_email.html
http://www.gnokii.org/
http://www.qpage.org/
http://sendpage.cpoint.net/
http://www.styx.demon.co.uk/
http://www.cstr.ed.ac.uk/projects/festival/
http://radscan.com/nas.html
http://rplay.doit.org/
http://www.nagios.org/

Plugin Theory

Introduction

Unlike many other monitoring tools, Nagios does not include any internal mechanisms for checking the status of services, hosts, etc.
Instead, Nagios relies on external programs (called plugins) to do the all the dirty work. Nagios will execute a plugin whenever there is a
need to check a service or host that is being monitored. The plugin does something (notice the very general term) to perform the check
and then simply returns the results to Nagios. Nagios will process the results that it receives from the plugin and take any necessary
actions (running event handlers, sending out notifications, etc).

The image below show how plugins are separated fromt the core program logic in Nagios. Nagios executes the plugins which then check
local or remote resources or services of some type. When the plugins have finished checking the resource or service, they simply pass the
results of the check back to Nagios for processing. A more complex diagram on how plugins work can be found in the documentation on
passive service checks.

The Upside

The good thing about the plugin architecture is that you can monitor just about anything you can think of. If you can automate the process
of checking something, you can monitor it with Nagios. There are already a lot of plugins that have been created in order to monitor basic
resources such as processor load, disk usage, ping rates, etc. If you want to monitor something else, take a look at the documentation on
writing plugins and roll your own. Its simple!

The Downside

The only real downside to the plugin architecture is the fact that Nagios has absolutely no idea what it is that you're monitoring. You could
be monitoring network traffic statistics, data error rates, room temperate, CPU voltage, fan speed, processor load, disk space, or the ability
of your super-fantastic toaster to properly brown your bread in the morning... As such, Nagios cannot produce graphs of changes to the
exact values of resources you're monitoring over time. It can only track changes in the state of those resources. Only the plugins
themselves know exactly what they're monitoring and how to perform checks. However, plugins can return optional performance data
along with status information. This performance data can then be passed on to external applications which could produce graphs of
service-specific information (i.e. disk space usage, processor load, etc.). More information on performance data can be found here.

Using Plugins For Service Checks

The correlation between plugins and service checks should be fairly obvious. When Nagios needs to check the status of a particular
service that you have defined, it will execute the plugin you specified in the <check_command> argument of the service definition. The
plugin will check the status of the service or resource you specify and return the results to Nagios.

Using Plugins For Host Checks

Using plugins to check the status of hosts may be a bit more difficult to understand. In each host definition you use the
<host_check_command> argument to specify a plugin that should be executed to check the status of the host. Host checks are not
performed on a regular basis - they are executed only as needed, usually when there are problems with one or more services that are
associated with the host.

Host checks can use the same plugins as service checks. The only real difference is the important of the plugin results. If a plugin that is
used for a host check results in a non-OK status, Nagios will believe that the host is down.

In most situations, you'll want to use a plugin which checks to see if the host can be pinged, as this is the most common method of telling
whether or not a host is up. However, if you were monitoring some kind of super-fantastic toaster, you might want to use a plugin that
would check to see if the heating elements turned on when the handle was pushed down. That would give a decent indication as to
whether or not the toaster was "alive".

Service Check Scheduling

Index

Introduction
Configuration options
Initial scheduling
Inter-check delay
Service interleaving
Max concurrent service checks
Time restraints
Normal scheduling
Scheduling during problems
Host checks
Scheduling delays
Scheduling example
Service definition options that affect scheduling

Introduction

I've gotten a lot of questions regarding how service checks are scheduled in certain situations, along with how the
scheduling differs from when the checks are actually executed and their results are processed. I'll try to go into a
little more detail on how this all works...

Configuration Options

Before we begin, there are several configuration options that affect how service checks are scheduled, executed,
and processed. For starters, each service definition contains three options that determine when and how each
specific service check is scheduled and executed. Those three options include:

● normal_check_interval
● retry_check_interval
● check_period

There are also four configuration options in the main configuration file that affect service checks. These include:

● inter_check_delay_method
● service_interleave_factor
● max_concurrent_checks
● service_reaper_frequency

We'll go into more detail on how all these options affect service check scheduling as we progress. First off, let's see
how services are initially scheduled when Nagios first starts or restarts...

Initial Scheduling

When Nagios (re)starts, it will attempt to schedule the initial check of all services in a manner that will minimize the
load imposed on the local and remote hosts. This is done by spacing the initial service checks out, as well as
interleaving them. The spacing of service checks (also known as the inter-check delay) is used to minimize/equalize
the load on the local host running Nagios and the interleaving is used to minimize/equalize load imposed on remote
hosts. Both the inter-check delay and interleave functions are discussed below.

Even though service checks are initially scheduled to balance the load on both the local and remote hosts, things
will eventually give in to the ensuing chaos and be a bit random. Reasons for this include the fact that services are
not all checked at the same interval, some services take longer to execute than others, host and/or service
problems can alter the timing of one or more service checks, etc. At least we try to get things off to a good start.
Hopefully the initial scheduling will keep the load on the local and remote hosts fairly balanced as time goes by...

Note: If you want to view the initial service check scheduling information, start Nagios using the -s command line
option. Doing so will display basic scheduling information (inter-check delay, interleave factor, first and last service
check time, etc) and will create a new status log that shows the exact time that all services are initially scheduled.
Because this option will overwrite the status log, you should not use it when another copy of Nagios is running.
Nagios does not start monitoring anything when this argument is used.

Inter-Check Delay

As mentioned before, Nagios attempts to equalize the load placed on the machine that is running Nagios by equally
spacing out initial service checks. The spacing between consecutive service checks is called the inter-check delay.
By giving a value to the inter_check_delay_method variable in the main config file, you can modify how this delay is
calculated. I will discuss how the "smart" calculation works, as this is the setting you will want to use for normal
operation.

When using the "smart" setting of the inter_check_delay_method variable, Nagios will calculate an inter-check
delay value by using the following calculation:

inter-check delay = (total normal check interval for all services) / (total number of services)2

Let's take an example. Say you have 1,000 services that each have a normal check interval of 5 minutes (obviously
some services are going to be checked at different intervals, but let's look at an easy case...). The total check
interal time for all services is 5,000 (1,000 * 5). That means that the average check interval for each service is 5
minutes (5,000 / 1,000). Give that information, we realize that (on average) we need to re-check 1,000 services
every 5 minutes. This means that we should use an inter-check delay of 0.005 minutes (0.3 seconds) when spacing
out the initial service checks. By spacing each service check out by 0.3 seconds, we can somewhat guarantee that
Nagios is scheduling and/or executing 3 new service checks every second. By spacing the checks out evenly over
time like this, we can hope that the load on the local server that is running Nagios remains somewhat balanced.

Service Interleaving

As discussed above, the inter-check delay helps to equalize the load that Nagios imposes on the local host. What
about remote hosts? Is it necessary to equalize load on remote hosts? Why? Yes, it is important and yes, Nagios
can help out with this. Equalizing load on remote hosts is especially important with the advent of service check
parallelization. If you monitor a large number of services on a remote host and the checks were not spread out, the

remote host might think that it was the victim of a SYN attack if there were a lot of open connections on the same
port. Plus, attempting to equalize the load on hosts is just a nice thing to do...

By giving a value to the service_interleave_factor variable in the main config file, you can modify how the interleave
factor is calculated. I will discuss how the "smart" calculation works, as this will probably be the setting you will want
to use for normal operation. You can, however, use a pre-set interleave factor instead of having Nagios calculate
one for you. Also of note, if you use an interleave factor of 1, service check interleaving is basically disabled.

When using the "smart" setting of the service_interleave_factor variable, Nagios will calculate an interleave factor
by using the following calculation:

interleave factor = ceil (total number of services / total number of hosts)

Let's take an example. Say you have a total of 1,000 services and 150 hosts that you monitor. Nagios would
calculate the interleave factor to be 7. This means that when Nagios schedules initial service checks it will schedule
the first one it finds, skip the next 6, schedule the next one, and so on... This process will keep repeating until all
service checks have been scheduled. Since services are sorted (and thus scheduled) by the name of the host they
are associated with, this will help with minimizing/equalizing the load placed upon remote hosts.

The images below depict how service checks are scheduled when they are not interleaved
(service_interleave_factor=1) and when they are interleaved with the service_interleave_factor variable equal to 4.

Non-Interleaved Checks: Interleaved Checks:

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/noninterleaved1.jpg
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/interleaved1.jpg
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/noninterleaved2.jpg
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/interleaved2.jpg
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/interleaved3.jpg

Maximum Concurrent Service Checks

In order to prevent Nagios from consuming all of your CPU resources, you can restrict the maximum number of
concurrent service checks that can be running at any given time. This is controlled by using the
max_concurrent_checks option in the main config file.

The good thing about this setting is that you can regulate Nagios' CPU usage. The down side is that service checks
may fall behind if this value is set too low. When it comes time to execute a service check, Nagios will make sure
that no more than x service checks are either being executed or waiting to have their results processed (where x is
the number of checks you specified for the max_concurrent_checks option). If that limit has been reached, Nagios
will postpone the execution of any pending checks until some of the previous checks have completed. So how does
one determine a reasonable value for the max_concurrent_checks option?

First off, you need to know the following things...

● The inter-check delay that Nagios uses to initially schedule service checks (use the -s command line
argument to check this)

● The frequency (in seconds) of service reaper events, as specified by the service_reaper_frequency variable
in the main config file.

● A general idea of the average time that service checks actually take to execute (most plugins timeout after
10 seconds, so the average is probably going to be lower)

Next, use the following calculation to determine a reasonable value for the maximum number of concurrent checks
that are allowed...

max. concurrent checks = ceil(max(service reaper frequency , average check execution time) / inter-check delay)

The calculated number should provide a reasonable starting point for the max_concurrent_checks variable. You
may have to increase this value a bit if service checks are still falling behind schedule or decrease it if Nagios is
hogging too much CPU time.

Let's say you are monitoring 875 services, each with an average check interval of 2 minutes. That means that your
inter-check delay is going to be 0.137 seconds. If you set the service reaper frequency to be 10 seconds, you can
calculate a rough value for the max. number of concurrent checks as follows (I'll assume that the average execution
time for service checks is less than 10 seconds) ...

max. concurrent checks = ceil(10 / 0.137)

In this case, the calculated value is going to be 73. This makes sense because (on average) Nagios are going to be
executing just over 7 new service checks per second and it only processes service check results every 10 seconds.
That means at given time there will be a just over 70 service checks that are either being executed or waiting to
have their results processed. In this case, I would probably recommend bumping the max. concurrent checks value
up to 80, since there will be delays when Nagios processes service check results and does its other work.
Obviously, you're going to have test and tweak things a bit to get everything running smoothly on your system, but
hopefully this provided some general guidelines...

Time Restraints

The check_period option determines the time period during which Nagios can run checks of the service.
Regardless of what status a particular service is in, if the time that it is actually executed is not a vaid time within the
time period that has been specified, the check will not be executed. Instead, Nagios will reschedule the service
check for the next valid time in the time period. If the check can be run (e.g. the time is valid within the time period),
the service check is executed.

Note: Even though a service check may not be able to be executed at a given time, Nagios may still schedule it to
be run at that time. This is most likely to happen during the initial scheduling of services, although it may happen in
other instances as well. This does not mean that Nagios will execute the check! When it comes time to actually
execute a service check, Nagios will verify that the check can be run at the current time. If it cannot, Nagios will not
execute the service check, but will instead just reschedule it for a later time. Don't let this one throw you confuse
you! The scheduling and execution of service checks are two distinctly different (although related) things.

Normal Scheduling

In an ideal world you wouldn't have network problems. But if that were the case, you wouldn't need a network
monitoring tool. Anyway, when things are running smoothly and a service is in an OK state, we'll call that "normal".
Service checks are normally scheduled at the frequency specified by the check_interval option. That's it. Simple,
huh?

Scheduling During Problems

So what happens when there are problems with a service? Well, one of the things that happens is the service
check scheduling changes. If you've configured the max_attempts option of the service definition to be something
greater than 1, Nagios will recheck the service before deciding that a real problem exists. While the service is being
rechecked (up to max_attempts times) it is considered to be in a "soft" state (as described here) and the service
checks are rescheduled at a frequency determined by the retry_interval option.

If Nagios rechecks the service max_attempts times and it is still in a non-OK state, Nagios will put the service into a
"hard" state, send out notifications to contacts (if applicable), and start rescheduling future checks of the service at
a frequency determined by the check_interval option.

As always, there are exceptions to the rules. When a service check results in a non-OK state, Nagios will check the
host that the service is associated with to determine whether or not is up (see the note below for info on how this is
done). If the host is not up (i.e. it is either down or unreachable), Nagios will immediately put the service into a hard
non-OK state and it will reset the current attempt number to 1. Since the service is in a hard non-OK state, the
service check will be rescheduled at the normal frequency specified by the check_interval option instead of the
retry_interval option.

Host Checks

Unlike service checks, host checks are not scheduled on a regular basis. Instead they are run on demand, as
Nagios sees a need. This is a common question asked by users, so it needs to be clarified.

One instance where Nagios checks the status of a host is when a service check results in a non-OK status. Nagios
checks the host to decide whether or not the host is up, down, or unreachable. If the first host check returns a non-
OK state, Nagios will keep pounding out checks of the host until either (a) the maximum number of host checks
(specified by the max_attempts option in the host definition) is reached or (b) a host check results in an OK state.

Also of note - when Nagios is check the status of a host, it holds off on doing anything else (executing new service
checks, processing other service check results, etc). This can slow things down a bit and cause pending service
checks to be delayed for a while, but it is necessary to determine the status of the host before Nagios can take any
further action on the service(s) that are having problems.

Scheduling Delays

It should be noted that service check scheduling and execution is done on a best effort basis. Individual service
checks are considered to be low priority events in Nagios, so they can get delayed if high priority events need to be
executed. Examples of high priority events include log file rotations, external command checks, and service reaper
events. Additionally, host checks will slow down the execution and processing of service checks.

Scheduling Example

The scheduling of service checks, their execution, and the processing of their results can be a bit difficult to
understand, so let's look at a simple example. Look at the diagram below - I'll refer to it as I explain how things are
done.

Image 5.

First off, the Xn events are service reaper events that are scheduled at a frequency specified by the
service_reaper_frequency option in the main config file. Service reaper events do the work of gathering and
processing service check results. They serve as the core logic for Nagios, kicking off host checks, event handlers
and notifications as necessary.

For the example here, a service has been scheduled to be executed at time A. However, Nagios got behind in its
event queue, so the check was not actually executed until time B. The service check finished executing at time C,
so the difference between points C and B is the actual amount of time that the check was running.

The results of the service check are not processed immediately after the check is done executing. Instead, the
results are saved for later processing by a service reaper event. The next service reaper event occurs at time D, so
that is approximately the time that the results are processed (the actual time may be later than D since other
service check results may be processed before this one).

At the time that the service reaper event processes the service check results, it will reschedule the next service
check and place it into Nagios' event queue. We'll assume that the service check resulted in an OK status, so the
next check at time E is scheduled after the originally scheduled check time by a length of time specified by the
check_interval option. Note that the service is not rescheduled based off the time that it was actually executed!
There is one exception to this (isn't there always?) - if the time that the service check is actually executed (point B)
occurs after the next service check time (point E), Nagios will compensate by adjusting the next check time. This is
done to ensure that Nagios doesn't go nuts trying to keep up with service checks if it comes under heavy load.
Besides, what's the point of scheduling something in the past...?

Service Definition Options That Affect Scheduling

Each service definition contains a normal_check_interval and retry_check_interval option. Hopefully this will clarify
what these two options do, how they relate to the max_check_attempts option in the service definition, and how
they affect the scheduling of the service.

First off, the normal_check_interval option is the interval at which the service is checked under "normal"
circumstances. "Normal" circumstances mean whenever the service is in an OK state or when its in a hard non-OK
state.

When a service first changes from an OK state to a non-OK state, Nagios gives you the ability to temporarily slow
down or speed up the interval at which subsequent checks of that service will occur. When the service first changes
state, Nagios will perform up to max_check_attempts-1 retries of the service check before it decides its a real
problem. While the service is being retried, it is scheduled according to the retry_check_interval option, which might
be faster or slower than the normal normal_check_interval option. While the service is being rechecked (up to
max_check_attempts-1 times), the service is in a soft state. If the service is rechecked max_check_attempts-1
times and it is still in a non-OK state, the service turns into a hard state and is subsequently rescheduled at the
normal rate specified by the check_interval option.

On a side note, it you specify a value of 1 for the max_check_attempts option, the service will not ever be checked
at the interval specified by the retry_check_interval option. Instead, it immediately turns into a hard state and is
subsequently rescheduled at the rate specified by the normal_check_interval option.

State Types

Introduction

The current state of services and hosts is determined by two components: the status of the service or host (i.e.
OK, WARNING, UP, DOWN, etc.) and the type of state it is in. There are two state types in Nagios - "soft"
states and "hard" states. State types are a crucial part of Nagios' monitoring logic. They are used to determine
when event handlers are executed and when notifications are sent out.

Service and Host Check Retries

In order to prevent false alarms, Nagios allows you to define how many times a service or host check will be
retried before the service or host is considered to have a real problem. The maximum number of retries before
a service or host check is considered to have a real problem is controlled by the <max_check)attempts> option
in the service and host definitions, respectively. Depending on what attempt a service or host check is currently
on determines what type of state it is is. There are a few exceptions to this in the service monitoring logic, but
we'll ignore those for now. Let's take a look at the different service state types...

Soft States

Soft states occur for services and hosts in the following situations...

● When a service or host check results in a non-OK state and it has not yet been (re)checked the number
of times specified by the <max_check_attempts> option in the service or host definition. Let's call this a
soft error state...

● When a service or host recovers from a soft error state. This is considered to be a soft recovery.

Soft State Events

What happens when a service or host is in a soft error state or experiences a soft recovery?

● The soft error or recovery is logged if you enabled the log_service_retries or log_host_retries options in
the main configuration file.

● Event handlers are executed (if you defined any) to handle the soft error or recovery for the service or
host. (Before any event handler is executed, the $STATETYPE$ macro is set to "SOFT").

● Nagios does not send out notifications to any contacts because there is (or was) no "real" problem with
the service or host.

As can be seen, the only important thing that really happens during a soft state is the execution of event
handlers. Using event handlers can be particularly useful if you want to try and proactively fix a problem before
it turns into a hard state. More information on event handlers can be found here.

Hard States

Hard states occur for services in the following situations (hard host states are discussed later)...

● When a service check results in a non-OK state and it has been (re)checked the number of times
specified by the <max_check_attempts> option in the service definition. This is a hard error state.

● When a service recovers from a hard error state. This is considered to be a hard recovery.
● When a service check results in a non-OK state and its corresponding host is either DOWN or

UNREACHABLE. This is an exception to the general monitoring logic, but makes perfect sense. If the
host isn't up why should we try and recheck the service?

Hard states occur for hosts in the following situations...

● When a host check results in a non-OK state and it has been (re)checked the number of times specified
by the <max_check_attempts> option in the host definition. This is a hard error state.

● When a host recovers from a hard error state. This is considered to be a hard recovery.

Hard State Changes

Before I discuss what happens when a host or service is in a hard state, you need to know about hard state
changes. Hard state changes occur when a service or host...

● changes from a hard OK state to a hard non-OK state
● changes from a hard non-OK state to a hard OK-state
● changes from a hard non-OK state of some kind to a hard non-OK state of another kind (i.e. from a hard

WARNING state to a hard UNKNOWN state)

Hard State Events

What happens when a service or host is in a hard error state or experiences a hard recovery? Well, that
depends on whether or not a hard state change (as described above) has occurred.

If a hard state change has occurred and the service or host is in a non-OK state the following things will occur..

● The hard service or host problem is logged.
● Event handlers are executed (if you defined any) to handle the hard problem for the service or host.

(Before any event handler is executed, the $STATETYPE$ macro is set to "HARD").
● Contacts will be notified of the service or host problem (if the notification logic allows it).

If a hard state change has occurred and the service or host is in an OK state the following things will occur..

● The hard service or host recovery is logged.
● Event handlers are executed (if you defined any) to handle the hard recovery for the service or host.

(Before any event handler is executed, the $STATETYPE$ macro is set to "HARD").
● Contacts will be notified of the service or host recovery (if the notification logic allows it).

If a hard state change has NOT occurred and the service or host is in a non-OK state the following things will
occur..

● Contacts will be re-notified of the service or host problem (if the notification logic allows it).

If a hard state change has NOT occurred and the service or host is in an OK state nothing happens. This is
because the service or host is in an OK state and was the last time it was checked as well.

Time Periods

or...
"Is This a Good Time?"

Introduction

Time periods allow you to have greater control over when service checks may be run, when host and service
notifications may be sent out, and when contacts may receive notifications. With this newly added power come
some potential problems, as I will describe later. I was initially very hesitant to introduce time periods because
of these snafus. I'll leave it up to you to decide what it right for your particular situation...

How Time Periods Work With Service Checks

Without the implementation of time periods, Nagios would monitor all services that you had defined 24 hours a
day, 7 days a week. While this is fine for most services that need monitoring, it doesn't work out so well for
others. For instance, do you really need to monitor printers all the time when they're really only used during
normal business hours? Perhaps you have development servers which you would prefer to have up, but aren't
"mission critical" and therefore don't have to be monitored for problems over the weekend. Time period
definitions now allow you to have more control over when such services may be checked...

The <check_period> argument of each service definition allows you to specify a time period that tells Nagios
when the service can be checked. When Nagios attempts to reschedule a service check, it will make sure that
the next check falls within a valid time range within the defined time period. If it doesn't, Nagios will adjust the
next service check time to coincide with the next "valid" time in the specified time period. This means that the
service may not get checked again for another hour, day, or week, etc.

Potential Problems With Service Checks

If you use time periods which do not cover a 24x7 range, you will run into problems, especially if a service (or
its corresponding host) is down when the check is delayed until the next valid time in the time period. Here are
some of those problems...

1. Contacts will not get re-notified of problems with a service until the next service check can be run.
2. If a service recovers during a time that has been excluded from the check period, contacts will not be

notified of the recovery.
3. The status of the service will appear unchanged (in the status log and CGI) until it can be checked next.
4. If all services associated with a particular host are on the same check time period, host problems or

recoveries will not be recognized until one of the services can be checked (and therefore notifications
may be delayed or not get sent out at all).

Limiting the service check period to anything other than a 24 hour a day, 7 days a week basis can cause a lot
of problems. Well, not really problems so much as annoyances and inaccuracies... Unless you have good

reason to do so, I would strongly suggest that you set the <check_period> argument of each service definition
to a "24x7" type of time period.

How Time Periods Work With Contact Notifications

Probably the best use of time periods is to control when notifications can be sent out to contacts. By using the
<service_notification_period> and <host_notification_period> arguments in contact definitions, you're able to
essentially define an "on call" period for each contact. Note that you can specify different time periods for host
and service notifications. This is helpful if you want host notifications to go out to the contact any day of the
week, but only have service notifications get sent to the contact on weekdays. It should be noted that these two
notification periods should cover any time that the contact can be notified. You can control notification times for
specific services and hosts on a one-by-one basis as follows...

By setting the <notification_period> argument of the host definition, you can control when Nagios is allowed to
send notifications out regarding problems or recoveries for that host. When a host notification is about to get
sent out, Nagios will make sure that the current time is within a valid range in the <notification_period> time
period. If it is a valid time, then Nagios will attempt to notify each contact of the host problem. Some contacts
may not receive the host notification if their <host_notification_period> does not allow for host notifications at
that time. If the time is not valid within the <notification_period> defined for the host, Nagios will not send the
notification out to any contacts.

You can control notification times for services in a similiar manner to host notification times. By setting the
<notification_period> argument of the service definition, you can control when Nagios is allowed to send
notifications out regarding problems or recoveries for that service. When a service notification is about to get
sent out, Nagios will make sure that the current time is within a valid range in the <notification_period> time
period. If it is a valid time, then Nagios will attempt to notify each contact of the service problem. Some contacts
may not receive the service notification if their <svc_notification_period> does not allow for service notifications
at that time. If the time is not valid within the <notification_period> defined for the service, Nagios will not send
the notification out to any contacts.

Potential Problems With Contact Notifications

There aren't really any major problems that you'll run into with using time periods to create custom contact
notification times. You do, however, need to be aware that contacts may not always be notified of a service or
host problem or recovery. If the time isn't right for both the host or service notification period and the contact
notification period, the notification won't go through. Once you weigh the potential problems of time-restricted
notifications against your needs, you should be able to come up with a configuration that works well for your
situation.

Conclusion

Time periods allow you to have greater control of how Nagios performs its monitoring and notification functions,
but can lead to problems. If you are unsure of what type of time periods to implement, or if you are having
problems with your current implementation, I would suggest using "24x7" time periods (where all times are valid
for each day of the week). Feel free to contact me if you have questions or are running into problems.

Event Handlers

Introduction

Event handlers are optional commands that are executed whenever a host or service state change occurs. An obvious use for event
handlers (especially with services) is the ability for Nagios to proactively fix problems before anyone is notified. Another potential use for
event handlers might be to log service or host events to an external database.

Event Handler Types

There are two main types of event handlers than can be defined - service event handlers and host event handlers. Event handler
commands are (optionally) defined in each host and service definition. Because these event handlers are only associated with particular
services or hosts, I will call these "local" event handlers. If a local event handler has been defined for a service or host, it will be executed
when that host or service changes state.

You may also specify global event handlers that should be run for every host or service state change by using the
global_host_event_handler and global_service_event_handler options in your main configuration file. Global event handlers are run
immediately prior to running a local service or host event handler.

When Are Event Handler Commands Executed?

Service and host event handler commands are executed when a service or host:

● is in a "soft" error state
● initially goes into a "hard" error state
● recovers from a "soft" or "hard" error state

What are "soft" and "hard" states you ask? They are described here .

Event Handler Execution Order

Global event handlers are executed before any local event handlers that you have configured for specific hosts or services.

Writing Event Handler Commands

In most cases, event handler commands will be shell or perl scripts. At a minimum, the scripts should take the following macros as
arguments:

Service event handler macros: $SERVICESTATE$, $STATETYPE$, $SERVICEATTEMPT$
Host event handler macros: $HOSTSTATE$, $STATETYPE$, $HOSTATTEMPT$

The scripts should examine the values of the arguments passed in and take any necessary action based upon those values. The best
way to understand how event handlers should work is to see and example. Lucky for you, one is provided below. There are also some
sample event handler scripts included in the eventhandlers/ subdirectory of the Nagios distribution. Some of these sample scripts
demonstrate the use of external commands to implement redundant monitoring hosts.

Permissions For Event Handler Commands

Any event handler commands you configure will execute with the same permissions as the user under which Nagios is running on your
machine. This presents a problem with scripts that attempt to restart system services, as root privileges are generally required to do these
sorts of tasks.

Ideally you should evaluate the types of event handlers you will be implementing and grant just enough permissions to the Nagios user

for executing the necessary system commands. You might want to try using sudo to accomplish this. Implementation of this is your job,
so read the docs and decide if its what you need.

Debugging Event Handler Commands

When you are debugging event handler commands, I would highly recommend that you enable logging of service retries, host retries, and
event handler commands. All of these logging options are configured in the main configuration file. Enabling logging for these options will
allow you to see exactly when and why event handler commands are being executed.

When you're done debugging your event handler commands you'll probably want to disable logging of service and host retries. They can
fill up your log file fast, but if you have enabled log rotation you might not care.

Service Event Handler Example

The example below assumes that you are monitoring the HTTP server on the local machine and have specified restart-httpd as the
event handler command for the HTTP service definition. Also, I will be assuming that you have set the <max_check_attempts> option for
the service to be a value of 4 or greater (i.e. the service is checked 4 times before it is considered to have a real problem). An example
service definition (w/ only the fields we discuss) might look like this...

define service{
 host_name somehost
 service_description HTTP
 max_check_attempts 4
 event_handler restart-httpd
 ...other service variables...
 }

Once the service has been defined with an event handler, we must define that event handler as a command. Notice the macros in the
command line that I am passing to the event handler - these are important!

define command{
 command_name restart-httpd
 command_line /usr/local/nagios/libexec/eventhandlers/restart-httpd $SERVICESTATE$
$STATETYPE$ $SERVICEATTEMPT$
 }

Now, let's actually write the event handler script (this is the /usr/local/nagios/libexec/eventhandlers/restart-httpd file).

#!/bin/sh
#
Event handler script for restarting the web server on the local machine
#
Note: This script will only restart the web server if the service is
retried 3 times (in a "soft" state) or if the web service somehow
manages to fall into a "hard" error state.
#

What state is the HTTP service in?
case "$1" in
OK)
 # The service just came back up, so don't do anything...
 ;;
WARNING)
 # We don't really care about warning states, since the service is probably still running...
 ;;
UNKNOWN)
 # We don't know what might be causing an unknown error, so don't do anything...
 ;;

http://www.courtesan.com/sudo/sudo.html

CRITICAL)
 # Aha! The HTTP service appears to have a problem - perhaps we should restart the server...

 # Is this a "soft" or a "hard" state?
 case "$2" in

 # We're in a "soft" state, meaning that Nagios is in the middle of retrying the
 # check before it turns into a "hard" state and contacts get notified...
 SOFT)

 # What check attempt are we on? We don't want to restart the web server on the
first
 # check, because it may just be a fluke!
 case "$3" in

 # Wait until the check has been tried 3 times before restarting the web server.
 # If the check fails on the 4th time (after we restart the web server), the state
 # type will turn to "hard" and contacts will be notified of the problem.
 # Hopefully this will restart the web server successfully, so the 4th check will
 # result in a "soft" recovery. If that happens no one gets notified because we
 # fixed the problem!
 3)
 echo -n "Restarting HTTP service (3rd soft critical state)..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;

 # The HTTP service somehow managed to turn into a hard error without getting fixed.
 # It should have been restarted by the code above, but for some reason it didn't.
 # Let's give it one last try, shall we?
 # Note: Contacts have already been notified of a problem with the service at this
 # point (unless you disabled notifications for this service)
 HARD)
 echo -n "Restarting HTTP service..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;
esac
exit 0

The sample script provided above will attempt to restart the web server on the local machine in two different instances - after the HTTP
service is being retried for the 3rd time (in an "soft" error state) and after the service falls into a "hard" state. The "hard" state situation
shouldn't really occur, since the script should restart the service when its still in a "soft" state (i.e. the 3rd check retry), but its left as a
fallback anyway.

It should be noted that the service event handler will only be execute the first time that the service falls into a "hard" state. This will
prevent Nagios from continuously executing the script to restart the web server when it is in a "hard" state.

External Commands

Introduction

Nagios can process commands from external applications (including CGIs - see the command CGI for an example) and alter various aspects of its monitoring functions based
on the commands it receives.

Enabling External Commands

By default, Nagios does not check for or process any external commands. If you want to enable external command processing, you'll have to do the following...

● Enable external command checking with the check_external_commands option
● Set the frequency of command checks with the command_check_interval option
● Specify the location of the command file with the command_file option. Its best to put the external command file in its own directory (i.e. /usr/local/nagios/var/rw).
● Setup proper permissions on the directory containing the external command file. Details on how to do this can be found here.

When Does Nagios Check For External Commands?

● At regular intervals specified by the command_check_interval option in the main configuration file
● Immediately after event handlers are executed. This is in addtion to the regular cycle of external command checks and is done to provide immediate action if an event

handler submits commands to Nagios.

Using External Commands

External commands can be used to accomplish a variety of things while Nagios is running. Example of what can be done include temporarily disabling notifications for services
and hosts, temporarily disabling service checks, forcing immediate service checks, adding comments to hosts and services, etc.

External Command Examples

Some example scripts that can be used to issue commands to Nagios can be found in the eventhandlers/ subdirectory of the Nagios distribution. You may have to modify the
scripts to accomodate for differences in system command syntaxes, file and directory locations, etc.

Command Format

External commands that are written to the command file have the following format...

[time] command_id;command_arguments

...where time is the time (in time_t format) that the external application or CGI committed the external command to the command file. Some of the commands that are available
are described in the table below, along with their command_id and a description of their command_arguments.

Implemented Commands

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/commandfile.html

This is a description of the some of the external commands which have been implemented in Nagios. Note that all time arguments should be specified in time_t format (seconds
since the UNIX epoch).

Command ID Command Arguments Command Description
ADD_HOST_COMMENT <host_name>;<persistent>;<author>;<comment> This command is used to associate a comment

with the specified host. The author argument
generally contains the name of the person who
entered the comment. The actual comment
should not contain any semi-colons. The
persistent flag determines whether or not the
comment will survive program restarts (1=save
comment across program restarts, 0=delete
comment on restart).

ADD_SVC_COMMENT <host_name>;<service_description>;<persistent>;<author>;<comment> This command is used to associate a comment
with the specified host. Note that both the host
name and service description are required. The
author argument generally contains the name of
the person who entered the comment. The
actual comment should not contain any semi-
colons. The persistent flag determines whether
or not the comment will survive program
restarts (1=save comment across program
restarts, 0=delete comment on restart).

DEL_HOST_COMMENT <comment_id> This is used to delete a comment having a ID
matching comment_id for the specified host.

DEL_ALL_HOST_COMMENTS <host_name> This is used to delete all comments associated
with the specified host.

DEL_SVC_COMMENT <comment_id> This is used to delete a comment having a ID
matching comment_id for the specified service.

DEL_ALL_SVC_COMMENTS <host_name>;<service_description> This is used to delete all comments associated
with the specified service. Note that both the
host name and service description are required.

DELAY_HOST_NOTIFICATION <host_name>;<next_notification_time> This will delay the next notification about this
host until the time specified by the
next_notification_time argument. This will have
no effect if the host state changes before the
next notification is scheduled to be sent out.

DELAY_SVC_NOTIFICATION <host_name>;<service_description>;<next_notification_time> This will delay the next notification about this
service until the time specified by the
next_notification_time argument. Note that both
the host name and service description are
required. This will have no effect if the service
state changes before the next notification is
scheduled to be sent out. This does not delay
notifications about the host.

SCHEDULE_SVC_CHECK <host_name>;<service_description>;<next_check_time> This will reschedule the next check of the
specified service for the time specified by the
next_check_time argument. Note that both the
host name and service description are required.

SCHEDULE_HOST_SVC_CHECKS <host_name><next_check_time> This will reschedule the next check of all
services on the specified host for the time
specified by the next_check_time argument.

ENABLE_SVC_CHECK <host_name>;<service_description> This will re-enable checks of the specified
service. Note that both the host name and
service description are required.

DISABLE_SVC_CHECK <host_name>;<service_description> This will temporarily disable checks of the
specified service. Service checks are
automatically re-enabled when Nagios restarts.
Issuing this command will have the side effect
of temporarily preventing notifications from
being sent out for the service. It does not
prevent notifications about the host from being
sent out.

ENABLE_SVC_NOTIFICATIONS <host_name>;<service_description> This is used to re-enable notifications for the
specified service. Note that both the host name
and service description are required.

DISABLE_SVC_NOTIFICATIONS <host_name>;<service_description> This is used to temporarily disable notifications
from being sent out about the specified service.
Notifications are automatically re-enabled when
Nagios restarts. Note that both the host name
and service description are required. This does
not disable notifications for the host.

ENABLE_HOST_SVC_NOTIFICATIONS <host_name> This is used to re-enable notifications for all
services on the specified host. This does not
enable notifications for the host.

DISABLE_HOST_SVC_NOTIFICATIONS <host_name> This is used to temporarily disable notifications
for all services on the specified host. This does
not disable notifications for the host.

ENABLE_HOST_SVC_CHECKS <host_name> This will re-enable checks of all services on the
specified host. If one or more services were in a
non-OK state when they were disabled,
contacts may receive notifications if the
service(s) recover after the checks are re-
enabled.

DISABLE_HOST_SVC_CHECKS <host_name> This will temporarily disable checks of all
services on the specified host. Service checks
are automatically re-enabled when Nagios
restarts. Issuing this command will have the
side effect of temporarily preventing
notifications from being sent out for any of the
affected services. It does not prevent
notifications about the host from being sent out.

ENABLE_HOST_NOTIFICATIONS <host_name> This will temporarily disable notifications for this
host. Note that this does not enable
notifications for the services associated with
this host.

DISABLE_HOST_NOTIFICATIONS <host_name> This will temporarily disable notifications for this
host. Notifications are automatically re-enabled
when Nagios restarts. Note that this does not
disable notifications for the services associated
with this host.

ENABLE_ALL_NOTIFICATIONS_BEYOND_HOST <host_name> This will enable notifications for all hosts and
services "beyond" the host specified by the
host_name argument (from the view of Nagios).
This command is most often used in
conjunction with redundant monitoring hosts.

DISABLE_ALL_NOTIFICATIONS_BEYOND_HOST <host_name> This will temporarily disable notifications for all
hosts and services "beyond" the host specified
by the host_name argument (from the view of
Nagios). Notifications are automatically re-
enabled when Nagios restarts. This command
is most often used in conjunction with
redundant monitoring hosts.

ENABLE_NOTIFICATIONS <execution_time> This will enable host and service notifications
on a program-wide basis at the time specified
by the execution time argument.

DISABLE_NOTIFICATIONS <execution_time> This will disable host and service notifications
on a program-wide basis at the time specified
by the execution time argument.

SHUTDOWN_PROGRAM <execution_time> This will cause Nagios to shutdown at the time
specified by the execution_time argument.
Note: Nagios cannot be restarted via the web
interface once it has been shutdown.

RESTART_PROGRAM <execution_time> This will cause Nagios to flush all configuration
state information, re-read all the config files,
and restart monitoring at the time specified by
the execution_time argument

PROCESS_SERVICE_CHECK_RESULT <host_name>;<service_description>;<return_code>;<plugin_output> This command is used to submit check results
for a particular service to Nagios. These
"passive" checks are acted upon in the same
manner as normal "active" checks. More
information on passive service checks can be
found here.

SAVE_STATE_INFORMATION <execution_time> This will force Nagios to dump current state
information for all services and hosts to the file
specified by the state_retention_file variable.
You must enable the retain_state_information
option for this to work.

READ_STATE_INFORMATION <execution_time> This will force Nagios to read previously saved
state information for all services and hosts from
the file specified by the state_retention_file
variable. You must enable the
retain_state_information option for this to work.

START_EXECUTING_SVC_CHECKS This is used to resume the execution of service
checks. The execution of service checks may
have been stopped at an earlier time by either
receiving a
STOP_EXECUTING_SVC_CHECKS
command, or by setting the
execute_service_checks option in the main
config file to 0. Most often used when
implementing redundant monitoring hosts.

STOP_EXECUTING_SVC_CHECKS This is used to stop the execution of service
checks. When service checks are not being
executed, Nagios will not keep requeuing
checks for a later time, but will not actually
execute any checks. This essentially puts
Nagios into a "sleep" mode, as far as
monitoring is concerned. Most often used when
implementing redundant monitoring hosts.

START_ACCEPTING_PASSIVE_SVC_CHECKS This is used to resume the acceptance of
passive service checks for all services. The
acceptance of passive service checks may
have been stopped at an earlier time by either
receiving a
STOP_ACCEPTING_PASSIVE_SVC_CHECKS
command, or by setting the
accept_passive_service_checks option in the
main config file to 0. If passive checks have
been disabled for specific services using the
DISABLE_PASSIVE_SVC_CHECKS
command, passive checks will not be accepted
for those services, but will for all others.

STOP_ACCEPTING_PASSIVE_SVC_CHECKS This is used to disable the acceptance of
passive service checks for all services.

ENABLE_PASSIVE_SVC_CHECKS <host_name>;<service_description> This is used to resume the acceptance of
passive service checks for a specific service.
The acceptance of passive checks may have
been disabled for a service at an earlier time by
receiving a
DISABLE_PASSIVE_SVC_CHECKS
command. If passive checks have been
disabled for all services either by using the
STOP_ACCEPTING_PASSIVE_SVC_CHECKS
command or by setting the
accept_passive_service_checks option in the
main config file to 0, passive checks will not be
accepted for this service.

DISABLE_PASSIVE_SVC_CHECKS <host_name>;<service_description> This is used to disable the acceptance of
passive service checks for a specific service.

Indirect Host and Service Checks

Introduction

Chances are, many of the services that you're going to be monitoring on your network can be checked directly
by using a plugin on the host that runs Nagios. Examples of services that can be checked directly include
availability of web, email, and FTP servers. These services can be checked directly by a plugin from the Nagios
host because they are publicly accessible resources. However, there are a number of things you may be
interested in monitoring that are not as publicly accessible as other services. These "private"
resources/services include things like disk usage, processor load, etc. on remote machines. Private resources
like these cannot be checked without the use of an intermediary agent. Service checks which require an
intermediary agent of some kind to actually perform the check are called indirect checks.

Indirect checks are useful for:

● Monitoring "local" resources (such as disk usage, processer load, etc.) on remote hosts
● Monitoring services and hosts behind firewalls
● Obtaining more realistic results from checks of time-sensitive services between remote hosts (i.e. ping

response times between two remote hosts)

There are several methods for performing indirect active checks (passive checks are not discussed here), but I
will only talk about how they can be done by using the nrpe addon.

Indirect Service Checks

The diagram below shows how indirect service checks work. Click the image for a larger version...

Multiple Indirected Service Checks

If you are monitoring servers that lie behind a firewall (and the host running Nagios is outside that firewall),
checking services on those machines can prove to be a bit of a pain. Chances are that you are blocking most
incoming traffic that would normally be required to perform the monitoring. One solution for performing active
checks (passive checks could also be used) on the hosts behind the firewall would be to poke a tiny hold in the
firewall filters that allow the Nagios host to make calls to the nrpe daemon on one host inside the firewall. The
host inside the firewall could then be used as an intermediary in performing checks on the other servers inside
the firewall.

The diagram below show how multiple indirect service checks work. Notice how the nrpe daemon is running on
hosts #1 and #2. The copy that runs on host #2 is used to allow the nrpe agent on host #1 to perform a check
of a "private" service on host #2. "Private" services are things like process load, disk usage, etc. that are not
directly exposed like SMTP, FTP, and web services. Click on the diagram for a larger image...

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/indirectsvccheck.jpg

Indirect Host Checks

Indirect host checks work on the same principle as indirect service checks. Basically, the plugin used in the
host check command asks an intermediary agent (i.e. a daemon running on a remote host) to perform the host
check for it. Indirect host checks are useful when the remote hosts being monitored are located behind a
firewall and you want to restrict inbound monitoring traffic to a particular machine. That machine (remote host
#1 in the diagram below) performs will perform the host check and return the results back to the top level
check_nrpe plugin (on the central server). It should be noted that with this setup comes potential problems. If
remote host #1 goes down, the check_nrpe plugin will not be able to contact the nrpe daemon and Nagios will
believe that remote hosts #2, #3, and #4 are down, even though this may not be the case. If host #1 is your
firewall machine, then the problem isn't really an issue because Nagios will detect that it is down and mark
hosts #2, #3, and #4 as being unreachable.

The diagram below shows how an indirect host check can be performed by using the nrpe daemon and
check_nrpe plugin. Click the image for a larger version.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/indirectsvccheck2.jpg

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/indirecthostcheck.jpg

Passive Service Checks

Introduction

On of the features of Nagios is that is can process service check results that are submitted by external
applications. Service checks which are performed and submitted to Nagios by external apps are called passive
checks. Passive checks can be contrasted with active checks, which are service checks that have been
initiated by Nagios.

Why The Need For Passive Checks?

Passive checks are useful for monitoring services that are:

● located behind a firewall, and can therefore not be checked actively from the host running Nagios
● asynchronous in nature and can therefore not be actively checked in a reliable manner (e.g. SNMP

traps, security alerts, etc.)

How Do Passive Checks Work?

The only real difference between active and passive checks is that active checks are initiated by Nagios, while
passive checks are performed by external applications. Once an external application has performed a service
check (either actively or by having received an synchronous event like an SNMP trap or security alert), it
submits the results of the service "check" to Nagios through the external command file.

The next time Nagios processes the contents of the external command file, it will place the results of all passive
service checks into a queue for later processing. The same queue that is used for storing results from active
checks is also used to store the results from passive checks.

Nagios will periodically execute a service reaper event and scan the service check result queue. Each service
check result, regardless of whether the check was active or passive, is processed in the same manner. The
service check logic is exactly the same for both types of checks. This provides a seamless method for handling
both active and passive service check results.

How Do External Apps Submit Service Check Results?

External applications can submit service check results to Nagios by writing a
PROCESS_SERVICE_CHECK_RESULT external command to the external command file.

The format of the command is as follows:

[<timestamp>]
PROCESS_SERVICE_CHECK_RESULT;<host_name>;<description>;<return_code>;<plugin_output>

where...

● timestamp is the time in time_t format (seconds since the UNIX epoch) that the service check was
perfomed (or submitted). Please note the single space after the right bracket.

● host_name is the short name of the host associated with the service in the service definition
● description is the description of the service as specified in the service definition
● return_code is the return code of the check (0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN)
● plugin_output is the text output of the service check (i.e. the plugin output)

Note that in order to submit service checks to Nagios, a service must have already been defined in the object
configuration file! Nagios will ignore all check results for services that had not been configured before it was last
(re)started.

If you only want passive results to be provided for a specific service (i.e. active checks should not be
performed), simply set the active_checks_enabled member of the service definition to 0. This will prevent
Nagios from ever actively performing a check of the service. Make sure that the passive_checks_enabled
member of the service definition is set to 1. If it isn't, Nagios won't process passive checks for the service!

An example shell script of how to submit passive service check results to Nagios can be found in the
documentation on volatile services.

Submitting Passive Service Check Results From Remote Hosts

If an application that resides on the same host as Nagios is sending passive service check results, it can simply
write the results directly to the external command file as outlined above. However, applications on remote hosts
can't do this so easily. In order to allow remote hosts to send passive service check results to the host that runs
Nagios, I've developed the nsca addon. The addon consists of a daemon that runs on the Nagios hosts and a
client that is executed from remote hosts. The daemon will listen for connections from remote clients, perform
some basic validation on the results being submitted, and then write the check results directly into the external
command file (as described above). More information on the nsca addon can be found here...

Using Both Active And Passive Service Checks

Unless you're implementing a distributed monitoring environment with the central server accepting only passive
service checks (and not performing any active checks), you'll probably be using both types of checks in your
setup. As mentioned before, active checks are more suited for services that lend themselves to periodic checks
(availability of an FTP or web server, etc), whereas passive checks are better off at handling asynchronous
events that occur at variable intervals (security alerts, etc.).

The image below gives a visual representation of how active and passive service checks can both be used to
monitor network resources (click on the image for a larger version).

The orange bubbles on the right side of the image are third-party applications that submit passive check results
to Nagios' external command file. One of the applications resides on the same host as Nagios, so it can write
directly to the command file. The other application resides on a remote host and makes used of the nsca client
program and daemon to transfer the passive check results to Nagios.

The items on the left side of the image represent active service checks that Nagios is performing. I've shown
how the checks can be made for local resources (disk usage, etc.), "exposed" resources on remote hosts (web
server, FTP server, etc.), and "private" resources on remote hosts (remote host disk usage, processor load,
etc.). In this example, the private resources on the remote hosts are actually checked by making use of the
nrpe addon, which facilitates the execution of plugins on remote hosts.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/activepassive.jpg

Volatile Services

Introduction

Nagios has the ability to distinguish between "normal" services and "volatile" services. The is_volatile option in
each service definition allows you to specify whether a specific service is volatile or not. For most people, the
majority of all monitored services will be non-volatile (i.e. "normal"). However, volatile services can be very
useful when used properly...

What Are They Useful For?

Volatile services are useful for monitoring...

● things that automatically reset themselves to an "OK" state each time they are checked
● events such as security alerts which require attention every time there is a problem (and not just the first

time)

What's So Special About Volatile Services?

Volatile services differ from "normal" services in three important ways. Each time they are checked when they
are in a hard non-OK state, and the check returns a non-OK state (i.e. no state change has occurred)...

● the non-OK service state is logged
● contacts are notified about the problem (if that's what should be done)
● the event handler for the service is run (if one has been defined)

These events normally only occur for services when they are in a non-OK state and a hard state change has
just occurred. In other words, they only happen the first time that a service goes into a non-OK state. If future
checks of the service result in the same non-OK state, no hard state change occurs and none of the events
mentioned take place again.

The Power Of Two

If you combine the features of volatile services and passive service checks, you can do some very useful
things. Examples of this include handling SNMP traps, security alerts, etc.

How about an example... Let's say you're running Psionic Software's PortSentry product (which is free, by the
way) to detect port scans on your machine and automatically firewall potential intruders. If you want to let
Nagios know about port scans, you could do the following..

In Nagios:

http://www.psionic.com/
http://www.psionic.com/abacus/portsentry/

● Configure a service called Port Scans and associate it with the host that PortSentry is running on.
● Set the max_check_attempts option in the service definition to 1. This will tell Nagios to immediate force

the service into a hard state when a non-OK state is reported.
● Either set the active_checks_enabled option to 0 or set the check_time option in the service definition to

a timeperiod that contains no valid time ranges. Doing either of these will prevent Nagios from ever
actively checking the service. Even though the service check will get scheduled, it will never actually be
checked.

In PortSentry:

● Edit your PortSentry configuration file (portsentry.conf), define a command for the KILL_RUN_CMD
directive as follows:

KILL_RUN_CMD="/usr/local/Nagios/libexec/eventhandlers/submit_check_result <host_name> 'Port
Scans' 2 'Port scan from host $TARGET$ on port $PORT$. Host has been firewalled.'"

Make sure to replace <host_name> with the short name of the host that the service is associated with.

Create a shell script in the /usr/local/nagios/libexec/eventhandlers directory named submit_check_result. The
contents of the shell script should be something similiar to the following...

 #!/bin/sh

 # Write a command to the Nagios command file to cause
 # it to process a service check result

 echocmd="/bin/echo"

 CommandFile="/usr/local/nagios/var/rw/nagios.cmd"

 # get the current date/time in seconds since UNIX epoch
 datetime=`date +%s`

 # create the command line to add to the command file
 cmdline="[$datetime] PROCESS_SERVICE_CHECK_RESULT;$1;$2;$3;$4"

 # append the command to the end of the command file
 `$echocmd $cmdline >> $CommandFile`

Note that if you are running PortSentry as root, you will have to make additions to the script to reset file
ownership and permissions so that Nagios and the CGIs can read/modify the command file. Details on
permissions/ownership of the command file can be found here.

So what happens when PortSentry detects a port scan on the machine?

● It blocks the host (this is a function of the PortSentry software)
● It executes the submit_check_result shell script to send the security alert info to Nagios
● Nagios reads the command file, recognized the port scan entry as a passive service check
● Nagios processes the results of the service by logging the CRITICAL state, sending notifications to

contacts (if configured to do so), and executes the event handler for the Port Scans service (if one is
defined)

Service Result Freshness Checks

Introduction

Nagios supports a feature that does "freshness" checking on the results of service checks. This feature is useful when you want to
ensure that passive checks are being received as frequently as you want. Although freshness checking can be used in a number of
situations, it is primarily useful when attempting to configure a distributed monitoring environment.

The purpose of "freshness" checking is to ensure that service checks are being provided passively by external applications on a
regular basis. If the results of a particular service check (for which freshness checking has been enabled) is determined to be "stale",
Nagios will force an active check of that service.

Configuring Freshness Checking

Before you configure per-service freshness threshold, you must enable freshness checking using the check_service_freshness and
freshness_check_interval directives in the main config file.

So how do you go about enabling freshness checking for a particular service? Well, at the moment you can only enable freshness
checking of services if you are using template-based object configuration file(s). The older object configuration files formats have not
been expanded to support freshness checking.

Assuming you're using the template-based object configuration file(s), you need to configure service definitions as follows.

● The check_freshness option in the service definition should be set to 1. This enables "freshness" checking for the service.
● The freshness_threshold option in the service definition should be set to a value (usually in seconds, unless you changed

the interval_length directive) which reflects how "fresh" the results for the service should be.
● The check_command option in the service definition should reflect valid command that should be used to actively check the

service when it is detected as being "stale".

How The Freshness Threshold Works

Nagios periodically checks the "freshness" of the results for all services that have freshness checking enabled. The
freshness_threshold option in each service definition is used to determine how "fresh" the results for each service should be. For
example, if you set the freshness_threshold option to 5 for one of your services and your interval_length directive is set to 60
seconds, Nagios will consider that service to be "stale" if its results are older than 5 minutes. If you do not specify a value for the
freshness_threshold option (or you set it to zero), Nagios will automatically calculate a "freshness" threshold to use by looking at
either the normal_check_interval or retry_check_interval options (depending on what type of state the service is currently in).

What Happens When A Service Check Result Becomes "Stale"

If the check results of a service are found to be "stale" (as described above), Nagios will force an active check of the service by
executing the command specified by the check_command option in the service definition. It is important to note that an active service
check which is being forced because the service was detected as being "stale" gets executed even if active service checks are
disabled on a program-wide or service-specific basis.

Working With Passive-Only Checks

As I mentioned earlier, freshness checking is of most use when you are dealing with services that get their results from passive
checks. More often than not (as in the case with distributed monitoring setups), these services may not be getting all of their results
from passive checks - no results are obtained from active checks.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xoddefault.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html#service

An example of a passive-only service might be one that reports the status of your nightly backup jobs. Perhaps you have a external
script that submit the results of the backup job to Nagios once the backup is completed. In this case, all of the checks/results for the
service are provided by an external application using passive checks. In order to ensure that the status of the backup job gets
reported every day, you may want to enable freshness checking for the service. If the external script doesn't submit the results of the
backup job, you can have Nagios fake a critical result by doing something like this...

Here's what the definition for the service might look like (some required options are omitted)...

define service{
 host_name backup-server
 service_description ArcServe Backup Job
 active_checks_enabled 0 ; active checks are NOT enabled
 passive_checks_enabled 1 ; passive checks are enabled (this is how
results are reported)
 check_freshness 1
 freshness_threshold 93600 ; 26 hour threshold, since backups may not
always finish at the same time
 check_command no-backup-report ; this command is run only if the service
results are "stale"
 ...other options...
 }

Notice that active checks are disabled for the service. This is because the results for the service are only made by an external
application using passive checks. Freshness checking is enabled and the freshness threshold has been set to 26 hours. This is a bit
longer than 24 hours because backup jobs sometimes run late from day to day (depending on how much data there is to backup,
how much network traffic is present, etc.). The no-backup-report command is executed only if the results of the service are
determined to be "stale". The definition of the no-backup-report command might look like this...

define command{
 command_name no-backup-report
 command_line /usr/local/nagios/libexec/nobackupreport.sh
 }

The nobackupreport.sh script in your /usr/local/nagios/libexec directory might look something like this:

#!/bin/sh

/bin/echo "CRITICAL: Results of backup job were not reported!"

exit 2

If Nagios detects that the service results are stale, it will run the no-backup-report command as an active service check (even
though active checks are disabled for this specific service - remember that this is a special case). This causes the
/usr/local/nagios/libexec/nobackupreport.sh script to be executed, which returns a critical state. The service go into to a critical state
(if it isn't already there) and someone will probably get notified of the problem.

Distributed Monitoring

Introduction

Nagios can be configured to support distributed monitoring of network services and resources. I'll try to briefly explan how this can be
accomplished...

Goals

The goal in the distributed monitoring environment that I will describe is to offload the overhead (CPU usage, etc.) of performing service
checks from a "central" server onto one or more "distributed" servers. Most small to medium sized shops will not have a real need for
setting up such an environment. However, when you want to start monitoring hundreds or even thousands of hosts (and several times
that many services) using Nagios, this becomes quite important.

Reference Diagram

The diagram below should help give you a general idea of how distributed monitoring works with Nagios. I'll be referring to the items
shown in the diagram as I explain things...

Central Server vs. Distributed Servers

When setting up a distributed monitoring environment with Nagios, there are differences in the way the central and distributed servers
are configured. I'll show you how to configure both types of servers and explain what effects the changes being made have on the
overall monitoring. For starters, lets describe the purpose of the different types of servers...

The function of a distributed server is to actively perform checks all the services you define for a "cluster" of hosts. I use the term
"cluster" loosely - it basically just mean an arbitrary group of hosts on your network. Depending on your network layout, you may have
several cluters at one physical location, or each cluster may be separated by a WAN, its own firewall, etc. The important thing to
remember to that for each cluster of hosts (however you define that), there is one distributed server that runs Nagios and monitors the
services on the hosts in the cluster. A distributed server is usually a bare-bones installation of Nagios. It doesn't have to have the web
interface installed, send out notifications, run event handler scripts, or do anything other than execute service checks if you don't want it
to. More detailed information on configuring a distributed server comes later...

The purpose of the central server is to simply listen for service check results from one or more distributed servers. Even though
services are occassionally actively checked from the central server, the active checks are only performed in dire circumstances, so lets
just say that the central server only accepts passive check for now. Since the central server is obtaining passive service check results

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/distributed.jpg

from one or more distributed servers, it serves as the focal point for all monitoring logic (i.e. it sends out notifications, runs event handler
scripts, determines host states, has the web interface installed, etc).

Obtaining Service Check Information From Distributed Monitors

Okay, before we go jumping into configuration detail we need to know how to send the service check results from the distributed
servers to the central server. I've already discussed how to submit passive check results to Nagios from same host that Nagios is
running on (as described in the documentation on passive checks), but I haven't given any info on how to submit passive check results
from other hosts.

In order to facilitate the submission of passive check results to a remote host, I've written the nsca addon. The addon consists of two
pieces. The first is a client program (send_nsca) which is run from a remote host and is used to send the service check results to
another server. The second piece is the nsca daemon (nsca) which either runs as a standalone daemon or under inetd and listens for
connections from client programs. Upon receiving service check information from a client, the daemon will sumbit the check information
to Nagios (on the central server) by inserting a PROCESS_SVC_CHECK_RESULT command into the external command file, along
with the check results. The next time Nagios checks for external commands, it will find the passive service check information that was
sent from the distributed server and process it. Easy, huh?

Distributed Server Configuration

So how exactly is Nagios configured on a distributed server? Basically, its just a bare-bones installation. You don't need to install the
web interface or have notifications sent out from the server, as this will all be handled by the central server.

Key configuration changes:

● Only those services and hosts which are being monitored directly by the distributed server are defined in the object
configuration file.

● The distributed server has its enable_notifications directive set to 0. This will prevent any notifications from being sent out by the
server.

● The distributed server is configured to obsess over services.
● The distributed server has an ocsp command defined (as described below).

In order to make everything come together and work properly, we want the distributed server to report the results of all service checks
to Nagios. We could use event handlers to report changes in the state of a service, but that just doesn't cut it. In order to force the
distributed server to report all service check results, you must enabled the obsess_over_services option in the main configuration file
and provide a ocsp_command to be run after every service check. We will use the ocsp command to send the results of all service
checks to the central server, making use of the send_nsca client and nsca daemon (as described above) to handle the tranmission.

In order to accomplish this, you'll need to define an ocsp command like this:

ocsp_command=submit_check_result

The command definition for the submit_check_result command looks something like this:

define command{
 command_name submit_check_result
 command_line /usr/local/nagios/libexec/eventhandlers/submit_check_result $HOSTNAME$
'$SERVICEDESC$' $SERVICESTATE$ '$OUTPUT$'
 }

The submit_check_result shell scripts looks something like this (replace central_server with the IP address of the central server):

 #!/bin/sh

 # Arguments:
 # $1 = host_name (Short name of host that the service is

 # associated with)
 # $2 = svc_description (Description of the service)
 # $3 = state_string (A string representing the status of
 # the given service - "OK", "WARNING", "CRITICAL"
 # or "UNKNOWN")
 # $4 = plugin_output (A text string that should be used
 # as the plugin output for the service checks)
 #

 # Convert the state string to the corresponding return code
 return_code=-1

 case "$3" in
 OK)
 return_code=0
 ;;
 WARNING)
 return_code=1
 ;;
 CRITICAL)
 return_code=2
 ;;
 UNKNOWN)
 return_code=-1
 ;;
 esac

 # pipe the service check info into the send_nsca program, which
 # in turn transmits the data to the nsca daemon on the central
 # monitoring server

 /bin/echo -e "$1\t$2\t$return_code\t$4\n" | /usr/local/nagios/bin/send_nsca central_server -
c /usr/local/nagios/etc/send_nsca.cfg

The script above assumes that you have the send_nsca program and it configuration file (send_nsca.cfg) located in the
/usr/local/nagios/bin/ and /usr/local/nagios/etc/ directories, respectively.

That's it! We've sucessfully configured a remote host running Nagios to act as a distributed monitoring server. Let's go over exactly
what happens with the distributed server and how it sends service check results to Nagios (the steps outlined below correspond to the
numbers in the reference diagram above):

1. After the distributed server finishes executing a service check, it executes the command you defined by the ocsp_command
variable. In our example, this is the /usr/local/nagios/libexec/eventhandlers/submit_check_result script. Note that the definition
for the submit_check_result command passed four pieces of information to the script: the name of the host the service is
associated with, the service description, the return code from the service check, and the plugin output from the service check.

2. The submit_check_result script pipes the service check information (host name, description, return code, and output) to the
send_nsca client program.

3. The send_nsca program transmits the service check information to the nsca daemon on the central monitoring server.
4. The nsca daemon on the central server takes the service check information and writes it to the external command file for later

pickup by Nagios.
5. The Nagios process on the central server reads the external command file and processes the passive service check information

that originated from the distributed monitoring server.

Central Server Configuration

We've looked at hot distributed monitoring servers should be configured, so let's turn to the central server. For all intensive purposes,
the central is configured as you would normally configure a standalone server. It is setup as follows:

● The central server has the web interface installed (optional, but recommended)
● The central server has its enable_notifications directive set to 1. This will enable notifications. (optional, but recommended)

● The central server has active service checks disabled (optional, but recommended - see notes below)
● The central server has external command checks enabled (required)
● The central server has passive service checks enabled (required)

There are three other very important things that you need to keep in mind when configuring the central server:

● The central server must have service definitions for all services that are being monitored by all the distributed servers. Nagios
will ignore passive check results if they do not correspond to a service that has been defined.

● If you're only using the central server to process services whose results are going to be provided by distributed hosts, you can
simply disable all active service checks on a program-wide basis by setting the execute_service_checks directive to 0. If you're
using the central server to actively monitor a few services on its own (without the aid of distributed servers), the
enable_active_checks option of the defintions for service being monitored by distributed servers should be set to 0. This will
prevent Nagios from actively checking those services.

It is important that you either disable all service checks on a program-wide basis or disable the enable_active_checks option in the
definitions for each service that is monitored by a distributed server. This will ensure that active service checks are never executed
under normal circumstances. The services will keep getting rescheduled at their normal check intervals (3 minutes, 5 minutes, etc...),
but the won't actually be executed. This rescheduling loop will just continue all the while Nagios is running. I'll explain why this is done
in a bit...

That's it! Easy, huh?

Problems With Passive Checks

For all intensive purposes we can say that the central server is relying solely on passive checks for monitoring. The main problem with
relying completely on passive checks for monitoring is the fact that Nagios must rely on something else to provide the monitoring data.
What if the remote host that is sending in passive check results goes down or becomes unreachable? If Nagios isn't actively checking
the services on the host, how will it know that there is a problem?

Fortunately, there is a way we can handle these types of problems...

Freshness Checking

Nagios supports a feature that does "freshness" checking on the results of service checks. More information freshness checking can be
found here. This features gives some protection against situations where remote hosts may stop sending passive service checks into
the central monitoring server. The purpose of "freshness" checking is to ensure that service checks are either being provided passively
by distributed servers on a regular basis or performed actively by the central server if the need arises. If the service check results
provided by the distributed servers get "stale", Nagios can be configured to force active checks of the service from the central
monitoring host.

So how do you do this? On the central monitoring server you need to configure services that are being monitoring by distributed servers
as follows...

● The check_freshness option in the service definitions should be set to 1. This enables "freshness" checking for the services.
● The freshness_threshold option in the service definitions should be set to a value which reflects how "fresh" the results for the

services (provided by the distributed servers) should be.
● The check_command option in the service definitions should reflect valid commands that can be used to actively check the

service from the central monitoring server.

Nagios periodically checks the "freshness" of the results for all services that have freshness checking enabled. The
freshness_threshold option in each service definition is used to determine how "fresh" the results for each service should be. For
example, if you set this value to 5 for one of your services and your interval_length directive is set to 60 seconds, Nagios will consider
the service results to be "stale" if they're older than 5 minutes. If you do not specify a value for the freshness_threshold option, Nagios
will automatically calculate a "freshness" threshold by looking at either the normal_check_interval or retry_check_interval options
(depending on what type of state the service is in). If the service results are found to be "stale", Nagios will run the service check
command specified by the check_command option in the service definition, thereby actively checking the service.

Remember that you have to specify a check_command option in the service definitions that can be used to actively check the status of
the service from the central monitoring server. Under normal circumstances, this check command is never executed (because active
checks were disabled on a program-wide basis or for the specific services). When freshness checking is enabled, Nagios will run this
command to actively check the status of the service even if active checks are disabled on a program-wide or service-specific basis.

If you are unable to define commands to actively check a service from the central monitoring host (or if turns out to be a major pain),
you could simply define all your services with the check_command option set to run a dummy script that returns a critical status. Here's
an example... Let's assume you define a command called 'service-is-stale' and use that command name in the check_command option
of your services. Here's what the definition would look like...

define command{
 command_name service-is-stale
 command_line /usr/local/nagios/libexec/staleservice.sh
 }

The staleservice.sh script in your /usr/local/nagios/libexec directory might look something like this:

#!/bin/sh

/bin/echo "CRITICAL: Service results are stale!"

exit 2

When Nagios detects that the service results are stale and runs the service-is-stale command, the
/usr/local/nagios/libexec/staleservice.sh script is executed and the service will go into a critical state. This would likely cause
notifications to be sent out, so you'll know that there's a problem.

Performing Host Checks

At this point you know how to obtain service check results passivly from distributed servers. This means that the central server is not
actively checking services on its own. But what about host checks? You still need to do them, so how?

Since host checks usually compromise a small part of monitoring activity (they aren't done unless absolutely necessary), I'd
recommend that you perform host checks actively from the central server. That means that you define host checks on the central server
the same way that you do on the distributed servers (and the same way you would in a normal, non-distributed setup).

There are ways to obtain host checks passively, but implementing them is beyond the scope of what I care to write about at this time. :-)

Redundant and Failover Network Monitoring

Introduction

This section describes a few scenarios for implementing redundant monitoring hosts an various types of network layouts. With
redundant hosts, you can maintain the ability to monitor your network when the primary host that runs Nagios fails or when portions of
your network become unreachable.

Note: If you are just learning how to use Nagios, I would suggest not trying to implement redudancy until you have becoming familiar
with the prerequisites I've laid out. Redundancy is a relatively complicated issue to understand, and even more difficult to implement
properly.

Index

Prerequisites
Sample scripts
Scenario 1 - Redundant monitoring
Scenario 2 - Failover monitoring

Prerequisites

Before you can even think about implementing redundancy with Nagios, you need to be familiar with the following...

● Implementing event handlers for hosts and services
● Issuing external commands to Nagios via shell scripts
● Executing plugins on remote hosts using either the nrpe addon or some other method
● Checking the status of the Nagios process with the check_nagios plugin

Sample Scripts

All of the sample scripts that I use in this documentation can be found in the eventhandlers/ subdirectory of the Nagios distribution.
You'll probably need to modify them to work on your system...

Scenario 1 - Redundant Monitoring

Introduction

This is an easy (and naive) method of implementing redundant monitoring hosts on your network and it will only protect against a
limited number of failures. More complex setups are necessary in order to provide smarter redundancy, better redundancy across
different network segments, etc.

Goals

The goal of this type of redundancy implementation is simple. Both the "master" and "slave" hosts monitor the same hosts and service
on the network. Under normal circumstances only the "master" host will be sending out notifications to contacts about problems. We
want the "slave" host running Nagios to take over the job of notifying contacts about problems if:

1. The "master" host that runs Nagios is down or..
2. The Nagios process on the "master" host stops running for some reason

Network Layout Diagram

The diagram below shows a very simple network setup. For this scenario I will be assuming that hosts A and E are both running Nagios
and are monitoring all the hosts shown. Host A will be considered the "master" host and host E will be considered the "slave" host.

Initial Program Settings

The slave host (host E) has its initial enable_notifications directive disabled, thereby preventing it from sending out any host or service
notifications. You also want to make sure that the slave host has its check_external_commands directive enabled. That was easy
enough...

Initial Configuration

Next we need to consider the differences between the object configuration file(s) on the master and slave hosts...

I will assume that you have the master host (host A) setup to monitor services on all hosts shown in the diagram above. The slave host
(host E) should be setup to monitor the same services and hosts, with the following additions in the configuration file...

● The host definition for host A (in the host E configuration file) should have a host event handler defined. Lets say the name of
the host event handler is handle-master-host-event.

● The configuration file on host E should have a service defined to check the status of the Nagios process on host A. Lets assume
that you define this service check to run the check_nagios plugin on host A. This can be done by using one of the methods
described in this FAQ.

● The service definition for the Nagios process check on host A should have an event handler defined. Lets say the name of the
service event handler is handle-master-proc-event.

It is important to note that host A (the master host) has no knowledge of host E (the slave host). In this scenario it simply doesn't need
to. Of course you may be monitoring services on host E from host A, but that has nothing to do with the implementation of
redundancy...

Event Handler Command Definitions

We need to stop for a minute and describe what the command definitions for the event handlers on the slave host look like. Here is an
example...

define command{
 command_name handle-master-host-event
 command_line /usr/local/nagios/libexec/eventhandlers/handle-master-host-event $HOSTSTATE$
$STATETYPE$
 }

define command{
 command_name handle-master-proc-event
 command_line /usr/local/nagios/libexec/eventhandlers/handle-master-proc-event
$SERVICESTATE$ $STATETYPE$
 }

This assumes that you have placed the event handler scripts in the /usr/local/nagios/libexec/eventhandlers directory. You may place
them anywhere you wish, but you'll need to modify the examples I've given here.

Event Handler Scripts

Okay, now lets take a look at what the event handler scripts look like...

Host Event Handler (handle-master-host-event):

#!/bin/sh

Only take action on hard host states...
case "$2" in
HARD)
 case "$1" in
 DOWN)
 # The master host has gone down!
 # We should now become the master host and take
 # over the responsibilities of monitoring the
 # network, so enable notifications...
 /usr/local/nagios/libexec/eventhandlers/enable_notifications
 ;;
 UP)
 # The master host has recovered!
 # We should go back to being the slave host and
 # let the master host do the monitoring, so
 # disable notifications...
 /usr/local/nagios/libexec/eventhandlers/disable_notifications
 ;;
 esac
 ;;
esac
exit 0

Service Event Handler (handle-master-proc-event):

#!/bin/sh

Only take action on hard service states...
case "$2" in
HARD)
 case "$1" in
 CRITICAL)
 # The master Nagios process is not running!
 # We should now become the master host and
 # take over the responsibility of monitoring
 # the network, so enable notifications...
 /usr/local/nagios/libexec/eventhandlers/enable_notifications
 ;;
 WARNING)
 UNKNOWN)

 # The master Nagios process may or may not
 # be running.. We won't do anything here, but
 # to be on the safe side you may decide you
 # want the slave host to become the master in
 # these situations...
 ;;
 OK)
 # The master Nagios process running again!
 # We should go back to being the slave host,
 # so disable notifications...
 /usr/local/nagios/libexec/eventhandlers/disable_notifications
 ;;
 esac
 ;;
esac
exit 0

What This Does For Us

The slave host (host E) initially has notifications disabled, so it won't send out any host or service notifications while the Nagios process
on the master host (host A) is still running.

The Nagios process on the slave host (host E) becomes the master host when...

● The master host (host A) goes down and the handle-master-host-event host event handler is executed.
● The Nagios process on the master host (host A) stops running and the handle-master-proc-event service event handler is

executed.

When the Nagios process on the slave host (host E) has notifications enabled, it will be able to send out notifications about any service
or host problems or recoveries. At this point host E has effectively taken over the responsibility of notifying contacts of host and service
problems!

The Nagios process on host E returns to being the slave host when...

● Host A recovers and the handle-master-host-event host event handler is executed.
● The Nagios process on host A recovers and the handle-master-proc-event service event handler is executed.

When the Nagios process on host E has notifications disabled, it will not send out notifications about any service or host problems or
recoveries. At this point host E has handed over the responsibilities of notifying contacts of problems to the Nagios process on host A.
Everything is now as it was when we first started!

Time Lags

Redundancy in Nagios is by no means perfect. One of the more obvious problems is the lag time between the master host failing and
the slave host taking over. This is affected by the following...

● The time between a failure of the master host and the first time the slave host detects a problem
● The time needed to verify that the master host really does have a problem (using service or host check retries on the slave host)
● The time between the execution of the event handler and the next time that Nagios checks for external commands

You can minimize this lag by...

● Ensuring that the Nagios process on host E (re)checks one or more services at a high frequency. This is done by using the
check_interval and retry_interval arguments in each service definition.

● Ensuring that the number of host rechecks for host A (on host E) allow for fast detection of host problems. This is done by using
the max_check_attempts argument in the host definition.

● Increase the frequency of external command checks on host E. This is done by modifying the command_check_interval option

in the main configuration file.

When Nagios recovers on the host A, there is also some lag time before host E returns to being a slave host. This is affected by the
following...

● The time between a recovery of host A and the time the Nagios process on host E detects the recovery
● The time between the execution of the event handler on host B and the next time the Nagios process on host E checks for

external commands

The exact lag times between the transfer of monitoring responsibilities will vary depending on how many services you have defined, the
interval at which services are checked, and a lot of pure chance. At any rate, its definitely better than nothing.

Special Cases

Here is one thing you should be aware of... If host A goes down, host E will have notifications enabled and take over the responsibilities
of notifying contacts of problems. When host A recovers, host E will have notifications disabled. If - when host A recovers - the Nagios
process on host A does not start up properly, there will be a period of time when neither host is notifying contacts of problems!
Fortunately, the service check logic in Nagios accounts for this. The next time the Nagios process on host E checks the status of the
Nagios process on host A, it will find that it is not running. Host E will then have notifications enabled again and take over all
responsibilities of notifying contacts of problems.

The exact amount of time that neither host is monitoring the network is hard to determine. Obviously, this period can be minimized by
increasing the frequency of service checks (on host E) of the Nagios process on host A. The rest is up to pure chance, but the total
"blackout" time shouldn't be too bad.

Scenario 2 - Failover Monitoring

Introduction

Failover monitoring is similiar to, but slightly different than redundant monitoring (as discussed above in scenario 1).

Goals

The basic goal of failover monitoring is to have the Nagios process on the slave host sit idle while the Nagios process on the master
host is running. If the process on the master host stops running (or if the host goes down), the Nagios process on the slave host starts
monitoring everything.

While the method described in scenario 1 will allow you to continue receive notifications if the master monitoring hosts goes down, it
does have some pitfalls. The biggest problem is that the slave host is monitoring the same hosts and servers as the master at the same
time as the master! This can cause problems with excessive traffic and load on the machines being monitored if you have a lot of
services defined. Here's how you can get around that problem...

Initial Program Settings

Disable active service checks and notifications on the slave host using the execute_service_checks and enable_notifications directives.
This will prevent the slave host from monitoring hosts and services and sending out notifications while the Nagios process on the
master host is still up and running. Make sure you also have the check_external_commands directive enabled on the slave host.

Master Process Check

Set up a cron job on the slave host that periodically (say every minute) runs a script that checks the staus of the Nagios process on the
master host (using the check_nrpe plugin on the slave host and the nrpe daemon and check_nagios plugin on the master host). The
script should check the return code of the check_nrpe plugin . If it returns a non-OK state, the script should send the appropriate
commands to the external command file to enable both notifications and active service checks. If the plugin returns an OK state, the
script should send commands to the external command file to disable both notifications and active checks.

Bye doing this you end up with only one process monitoring hosts and services at a time, which is much more efficient that monitoring
everything twice.

Also of note, you don't need to define host and service handlers as mentioned in scenario 1 because things are handled differently.

Additional Issues

At this point, you have implemented a very basic failover monitoring setup. However, there is one more thing you should consider doing
to make things work smoother.

The big problem with the way things have been setup thus far is the fact that the slave host doesn't have the current status of any
services or hosts at the time it takes over the job of monitoring. One way to solve this problem is to enable the ocsp command on the
master host and have it send all service check results to the slave host using the nsca addon. The slave host will then have up-to-date
status information for all services at the time it takes over the job of monitoring things. Since active service checks are not enabled on
the slave host, it will not actively run any service checks. However, it will execute host checks if necessary. This means that both the
master and slave hosts will be executing host checks as needed, which is not really a big deal since the majority of monitoring deals
with service checks.

That's pretty much it as far as setup goes.

Detection and Handling of State Flapping

Introduction

Nagios supports optional detection of hosts and services that are "flapping". Flapping occurs when a service or
host changes state too frequently, resulting in a storm of problem and recovery notifications. Flapping can be
indicative of configuration problems (i.e. thresholds set too low) or real network problems.

Before I go any futher, let me say that flapping detection has been a little difficult to implement. How exactly
does one determine what "too frequently" means in regards to state changes for a particular host or service?
When I first started looking into flap detection I tried to find some information on how flapping could/should be
detected. After I couldn't find any, I decided to settle with what seemed to be a reasonable solution. The
methods by which Nagios detects service and host state flapping are described below...

Service Flap Detection

Whenever a service check is performed that results in a hard state or a soft recovery state, Nagios checks to
see if the services has started or stopped flapping. It does this by storing the results of the last 21 checks of the
service in an array. Older check results in the array are overwritten by newer check results.

The contents of the historical state array are examined (in order from oldest result to newest result) to
determine the total percentage of change in state that has occurred during the last 21 service checks. A state
change occurs when an archived state is different from the archived state that immediately precedes it in the
array. Since we keep the results of the last 21 service checks in the array, there is a possibility of having 20
state changes.

Image 1 below shows a chronological array of service states. OK states are shown in green, WARNING states
in yellow, CRITICAL states in red, and UNKNOWN states in orange. Blue arrows have been placed over
periods of time where state changes occur.

Image 1.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/statetransitions.jpg

Services that rarely change between states will have a lower total percentage of change than those that do
change between states a lot. Since flapping is associated with frequent state changes, we can use the
calculated amount of change in state over a period of time (in this case, the last 21 service checks) to
determine whether or not a service is flapping. That's not quite good enough though...

It stands to reason that newer state changes should carry more weight than older state changes, so we really
need to recalculate the total percent change in state for the service on some sort of curve... To make things
simple, I've decided to make the relationship between time and weight linear for calculation of percent state
change. The flap detection routines are currently designed to make the newest possible state change carry
50% more weight than the oldest possible state change. Image 2 shows how more recent state changes are
given more weight than older state changes when calculating the overall or total percent state change for a
particular service. If you really want to see exactly how the weighted calculation is done, look at the code in
base/flapping.c...

Image 2.

Let's look at a quick example of how flap detection is done. Image 1 above depicts the array of historical
service check results for a particular service. The oldest result is on the left and the newest result is on the
right. We see that in the example below there were a total of 7 state changes (at t3, t4, t5, t9, t12, t16, and t19).
Without any weighting of the state changes over time, this would give us a total state change of 35% (7 state
changes out of a possible 20 state changes). When the individual state changes are weighted relative to the
time at which they occurred, the resulting total percent state change for the service is less than 35%. This
makes sense since most of the state changes occurred earlier rather than later. Let's just say that the weighted
percent of state change turned out to be 31%...

So what significance does the 31% state change have? Well, if the service was previously not flapping and
31% is equal to or greater than the value specified by the high_service_flap_threshold option in the service
definition, Nagios considers the service to have just started flapping. If the service was previously flapping and
31% is less than or equal to the value specified by the low_service_flap_threshold value in the service
definition, Nagios considers the service to have just stopped flapping. If either of those two conditions are not
met, Nagios does nothing else with the service, since it is either not currently flapping or it is still flapping...

Host Flap Detection

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/statetransitions2.jpg

Host flap detection works in a similiar manner to service flap detection, with one important difference: Nagios
will attempt to check to see if a host is flapping whenever the status of the host is checked and whenever a
service associated with that host is checked. Why is this done? Well, with services we know that the minimum
amount of time between consecutive flap detection routines is going to be equal to the service check interval.
With hosts, we don't have a check interval, since hosts are not monitored on a regular basis - they are only
checked as necessary. A host will be checked for flapping if its state has changed since the last time the flap
detection was performed for that host or if its state has not changed but at least x amount of time has passed
since the flap detection was performed. The x amount of time is equal to the average check interval of all
services associated with the host. That's the best method I could come up with for determining how often flap
detection could be performed on a host...

Just as with services, Nagios stores the results of the last 21 of these host checks in an array for the flap
detection logic. State changes are weighted based on the time at which they occurred, and the total percent
change in state is calculated in the same manner that it is in the service flapping logic.

If a host was previously not flapping and its total computed state change percentage is equal to or greater than
the value specified by the high_host_flap_threshold option, Nagios considers the host to have just started
flapping. If the host was previously flapping and its total computed state change percentage is less than or
equal to the value specified by the low_host_flap_threshold value, Nagios considers the host to have just
stopped flapping. If either of those two conditions are not met, Nagios does nothing else with the host, since it
is either not currently flapping or it is still flapping...

Host- and Service-Specific Flap Detection Thresholds

If you're using the template-based object definition files, you can specify host- and service-specific flap
detection thresholds by adding low_flap_threshold and high_flap_threshold directives to individual host and
service definitions. If these directives are not present in the host or service definitions, the global host and
service flap detection thresholds will be used.

On a similiar note, you can also enable/disable flap detection for specific hosts and services by using the
enable_flap_detection directive in each object definition. Note that flap detection must be enabled on a
program-wide basis (using the enable_flap_detection directive in the main config file) in order for any host or
service to have flap detection enabled.

Flap Handling

When a service or host is first detected as flapping, Nagios will do three things:

1. Log a message indicating that the service or host is flapping
2. Add a non-persistent comment to the host or service indicating that it is flapping
3. Supress notifications for the service or host (this is one of the filters in the notification logic)

When a service or host stops flapping, Nagios will do the following:

1. Log a message indicating that the service or host has stopped flapping
2. Delete the comment that was originally added to the service or host when it started flapping

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html

3. Remove the block on notifications for the service or host (notifications will still be bound to the normal
notification logic)

Service Check Parallelization

Introduction

One of the features of Nagios is its ability to execute service checks in parallel. This documentation will attempt
to explain in detail what that means and how it affects services that you have defined.

How The Parallelization Works

Before I can explain how the service check parallelization works, you first have to understand a bit about how
Nagios schedules events. All internal events in Nagios (i.e. log file rotations, external command checks, service
checks, etc.) are placed in an event queue. Each item in the event queue has a time at which it is scheduled to
be executed. Nagios does its best to ensure that all events get executed when they should, although events
may fall behing schedule if Nagios is busy doing other things.

Service checks are one type of event that get scheduled in Nagios' event queue. When it comes time for a
service check to be executed, Nagios will kick off another process (using a call to fork()) to go out and run the
service check (i.e. a plugin of some sort). Nagios does not, however, wait for the service check to finish!
Instead, Nagios will immediately go back to servicing other events that reside in the event queue...

So what happens when the service check finishes executing? Well, the process that was started by Nagios to
run the service check sends a message back to Nagios containing the results of the service check. It is then up
to Nagios to check for and process the results of that service check when it gets a chance.

In order for Nagios to actually do any monitoring, it much process the results of service checks that have
finished executing. This is done via a service check "reaper" process. Service "reapers" are another type of
event that get scheduled in Nagios' event queue. The frequency of these "reaper" events is determined by the
service_reaper_frequency option in the main configuration file. When a "reaper" event is executed, it will check
for any messages that contain the result of service checks that have finished executing. These service check
results are then handled by the core service monitoring logic. From there Nagios determines whether or not
hosts should be checked, notifications should be sent out, etc. When the service check results have been
processed, Nagios will reschedule the next check of the service and place it in the event queue for later
execution. That completes the service check/monitoring cycle!

For those of you who really want to know, but haven't looked at the code, Nagios uses message queues to
handle communication between Nagios and the process that actually runs the service check...

Potential Gotchas...

You should realize that there are potential drawbacks to having service checks parallelized. Since more than
one service check may be running at the same time, they have may interfere with one another. You'll have to
evaluate what types of service checks you're running and take appropriate steps to guard against any
unfriendly outcomes. This is particularly important if you have more than one service check that accesses any
hardware (like a modem). Also, if two or more service checks connect to daemon on a remote host to check

some information, make sure that daemon can handle multiple simultaneous connections.

Fortunately, there are some things you can do to protect against problems with having some types of service
checks "collide"...

1. The easiest thing you can do to prevent service check collisions to to use the service_interleave_factor
variable. Interleaving services will help to reduce the load imposed upon remote hosts by service
checks. Set the variable to use "smart" interleave factor calculation and then adjust it manually if you
find it necessary to do so.

2. The second thing you can do is to set the max_check_attempts argument in each service definition to
something greater than one. If the service check does happen to collide with another running check,
Nagios will retry the service check max_check_attempts-1 times before notifying anyone of a problem.

3. You could try is to implement some kind of "back-off and retry" logic in the actual service check code,
although you may find it difficult or too time-consuming

4. If all else fails you can effectively prevent service checks from being parallelized by setting the
max_concurrent_checks option to 1. This will allow only one service to be checked at a time, so it isn't a
spectacular solution. If there is enough demand, I will add an option to the service definitions which will
allow you to specify on a per-service basis whether or not a service check can be parallelized. If there
isn't enough demand, I won't...

One other thing to note is the effect that parallelization of service checks can have on system resources on the
machine that runs Nagios. Running a lot of service checks in parallel can be taxing on the CPU and memory.
The inter_check_delay_method will attempt to minimize the load imposed on your machine by spreading the
checks out evenly over time (if you use the "smart" method), but it isn't a surefire solution. In order to have
some control over how many service checks can be run at any given time, use the max_concurrent_checks
variable. You'll have to tweak this value based on the total number of services you check, the system resources
you have available (CPU speed, memory, etc.), and other processes which are running on your machine. For
more information on how to tweak the max_concurrent_checks variable for your setup, read the documentation
on check scheduling.

What Isn't Parallelized

It is important to remember that only the execution of service checks has been parallelized. There is good
reason for this - other things cannot be parallelized in a very safe or sane manner. In particular, event handlers,
contact notifications, processing of service checks, and host checks are not parallelized. Here's why...

Event handlers are not parallelized because of what they are designed to do. Much of the power of event
handlers comes from the ability to do proactive problem resultion. An example of this is restarting the web
server when the HTTP service on the local machine is detected as being down. In order to prevent more than
one event handler from trying to "fix" problems in parallel (without any knowledge of what each other is doing), I
have decided to not parallelize them.

Contact notifications are not parallelized because of potential notification methods you may be using. If, for
example, a contact notification uses a modem to dial out and send a message to your pager, it requires
exclusive access to the modem while the notification is in progress. If two or more such notifications were being
executed in parallel, all but one would fail because the others could not get access to the modem. There are
ways to get around this, like providing some kind of "back-off and retry" method in the notification script, but I've

decided not to rely on users having implemented this type of feature in their scripts. One quick note - if you
have service checks which use a modem, make sure that any notification scripts that dial out have some
method of retrying access to the modem. This is necessary because a service check may be running at the
same time a notification is!

Processing of service check results has not been parallelized. This has been done to prevent situations where
multiple notifications about host problems or recoveries may be sent out if a host goes down, becomes
unreachable, or recovers.

Notification Escalations

Introduction

Nagios supports optional escalation of contact notifications for hosts and services. I'll explain quickly how they
work, although they should be fairly self-explanatory...

Service Notification Escalations

Escalation of service notifications is accomplished by defining service escalation definitions in your object
configuration file. Service escalation definitions are used to escalate notifications for a particular service.

Host Notification Escalations

Escalation of host notifications is accomplished by defining either host or hostgroup escalation definitions in
your object configuration file. Host escalation definitions are used to escalate notifications for specific hosts,
while hostgroup escalation definitions are used to escalate notifications for all hosts in a particular hostgroup.
The examples I provide below all use service escalation definitions, but host and hostgroup escalations work
the same way (except for the fact that they are used for host notifications and not service notifications).

When Are Notifications Escalated?

Notifications are escalated if and only if one or more escalation definitions matches the current notification that
is being sent out. If a host or service notification does not have any valid escalation definitions that applies to it,
the contact group(s) specified in either the host group or service definition will be used for the notification. Look
at the example below:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 90
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 6
 last_notification 10
 notification_interval 60
 contact_groups nt-admins,managers,everyone
 }

Notice that there are "holes" in the notification escalation definitions. In particular, notifications 1 and 2 are not
handled by the escalations, nor are any notifications beyond 10. For the first and second notification, as well as
all notifications beyond the tenth one, the default contact groups specified in the service definition are used. For
all the examples I'll be using, I'll be assuming that the default contact groups for the service definition is called
nt-admins.

Contact Groups

When defining notification escalations, it is important to keep in mind that any contact groups that were
members of "lower" escalations (i.e. those with lower notification number ranges) should also be included in
"higher" escalation definitions. This should be done to ensure that anyone who gets notified of a problem
continues to get notified as the problem is escalated. Example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 90
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 6
 last_notification 0
 notification_interval 60
 contact_groups nt-admins,managers,everyone
 }

The first (or "lowest") escalation level includes both the nt-admins and managers contact groups. The last (or
"highest") escalation level includes the nt-admins, managers, and everyone contact groups. Notice that the nt-
admins contact group is included in both escalation definitions. This is done so that they continue to get paged
if there are still problems after the first two service notifications are sent out. The managers contact group first
appears in the "lower" escalation definition - they are first notified when the third problem notification gets sent
out. We want the managers group to continue to be notified if the problem continues past five notifications, so
they are also included in the "higher" escalation definition.

Overlapping Escalation Ranges

Notification escalation definitions can have notification ranges that overlap. Take the following example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3

 last_notification 5
 notification_interval 20
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 0
 notification_interval 30
 contact_groups on-call-support
 }

In the example above:

● The nt-admins and managers contact groups get notified on the third notification
● All three contact groups get notified on the fourth and fifth notifications
● Only the on-call-support contact group gets notified on the sixth (or higher) notification

Recovery Notifications

Recovery notifications are slightly different than problem notifications when it comes to escalations. Take the
following example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 20
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 0
 notification_interval 30
 contact_groups on-call-support
 }

If, after three problem notifications, a recovery notification is sent out for the service, who gets notified? The
recovery is actually the fourth notification that gets sent out. However, the escalation code is smart enough to
realize that only those people who were notified about the problem on the third notification should be notified
about the recovery. In this case, the nt-admins and managers contact groups would be notified of the recovery.

Notification Intervals

You can change the frequency at which escalated notifications are sent out for a particular host or service by
using the notification_interval option of the hostgroup or service escalation definition. Example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 6
 last_notification 0
 notification_interval 60
 contact_groups nt-admins,managers,everyone
 }

In this example we see that the default notification interval for the services is 240 minutes (this is the value in
the service definition). When the service notification is escalated on the 3rd, 4th, and 5th notifications, an
interval of 45 minutes will be used between notifications. On the 6th and subsequent notifications, the
notification interval will be 60 minutes, as specified in the second escalation definition.

Since it is possible to have overlapping escalation definitions for a particular hostgroup or service, and the fact
that a host can be a member of multiple hostgroups, Nagios has to make a decision on what to do as far as the
notification interval is concerned when escalation definitions overlap. In any case where there are multiple valid
escalation definitions for a particular notification, Nagios will choose the smallest notification interval. Take the
following example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 0
 notification_interval 60

 contact_groups nt-admins,managers,everyone
 }

We see that the two escalation definitions overlap on the 4th and 5th notifications. For these notifications,
Nagios will use a notification interval of 45 minutes, since it is the smallest interval present in any valid
escalation definitions for those notifications.

One last note about notification intervals deals with intervals of 0. An interval of 0 means that Nagios should
only sent a notification out for the first valid notification during that escalation definition. All subsequent
notifications for the hostgroup or service will be suppressed. Take this example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 6
 notification_interval 0
 contact_groups nt-admins,managers,everyone
 }

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 7
 last_notification 0
 notification_interval 30
 contact_groups nt-admins,managers
 }

In the example above, the maximum number of problem notifications that could be sent out about the service
would be four. This is because the notification interval of 0 in the second escalation definition indicates that only
one notification should be sent out (starting with and including the 4th notification) and all subsequent
notifications should be repressed. Because of this, the third service escalation definition has no effect
whatsoever, as there will never be more than four notifications.

Monitoring Service and Host Clusters

Introduction

Several people have asked how to go about monitoring clusters of hosts or services, so I decided to write up a
little documentation on how to do this. Its fairly straightforward, so hopefully you find things easy to understand...

First off, we need to define what we mean by a "cluster". The simplest way to understand this is with an example.
Let's say that your organization has five hosts which provide redundant DNS services to your organization. If one
of them fails, its not a major catastrophe because the remaining servers will continue to provide name resolution
services. If you're concerned with monitoring the availability of DNS service to your organization, you will want to
monitor five DNS servers. This is what I consider to be a service cluster. The service cluster consists of five
separate DNS services that you are monitoring. Although you do want to monitor each individual service, your
main concern is with the overall status of the DNS service cluster, rather than the availability of any one particular
service.

If your organization has a group of hosts that provide a high-availability (clustering) solution, I would consider
those to be a host cluster. If one particular host fails, another will step in to take over all the duties of the failed
server. As a side note, check out the High-Availability Linux Project for information on providing host and service
redundancy with Linux.

Plan of Attack

There are several ways you could potentially monitor service or host clusters. I'll describe the method that I
believe to be the easiest. Monitoring service or host clusters involves two things:

● Monitoring individual cluster elements
● Monitoring the cluster as a collective entity

Monitoring individual host or service cluster elements is easier than you think. In fact, you're probably already
doing it. For service clusters, just make sure that you are monitoring each service element of the cluster. If you've
got a cluster of five DNS servers, make sure you have five separate service definitions (probably using the
check_dns plugin). For host clusters, make sure you have configured appropriate host definitions for each
member of the cluster (you'll also have to define at least one service to be monitored for each of the hosts).
Important: You're going to want to disable notifications for the individual cluster elements (host or service
definitions). Even though no notifications will be sent about the individual elements, you'll still get a visual display
of the individual host or service status in the status CGI. This will be useful for pinpointing the source of problems
within the cluster in the future.

Monitoring the overall cluster can be done by using the previously cached results of cluster elements. Although
you could re-check all elements of the cluster to determine the cluster's status, why waste bandwidth and
resources when you already have the results cached? Where are the results cached? Cached results for cluster
elements can be found in the status file (assuming you are monitoring each element). The check_cluster plugin is
designed specifically for checking cached host and service states in the status file. Important: Although you didn't
enable notifications for individual elements of the cluster, you will want them enabled for the overall cluster status

http://www.linux-ha.org/

check.

Using the check_cluster Plugin

The check_cluster plugin is designed to check the overall status of a host or service cluster. It works by checking
the cached status information of individual host or service cluster elements in the status file.

More to come... The check_cluster plugin can temporarily be obtained from
http://www.nagios.org/download/alpha.

Monitoring Service Clusters

First off, you're going to have to define a new service for monitoring the cluster. This service will perform the
check of the overall status of the cluster. You are probably going to want to have notifications enabled for this
service so you know when there are problems that need to be looked at. You probably don't care so much about
the status of any one of the services that are members of the cluster, so you can disable notifications in those
those service definitions.

Okay, let's assume that you have a check_service_cluster command defined as follows:

define command{
 command_name check_service_cluster
 command_line /usr/local/nagios/libexec/check_cluster --service
/usr/local/nagios/var/status.log $ARG1$ $ARG2$ < $ARG3$
 }

Let's say you have five services that are members of the service cluster. If you want Nagios to generate a warning
alert if two or more services in the cluster and in a non-ok state or a critical alert if three or more are in a non-ok
state, the <check_command> argument of the service you define to monitor the cluster looks something like this:

check_service_cluster!2!3!/usr/local/nagios/etc/servicecluster.cfg

The $ARG3$ macro will be replaced with /usr/local/nagios/etc/servicecluster.cfg when the check is made. Since
this is the file from which the check_cluster plugin will read the names of cluster members, you'll need to create
that file and add the services that are members (one per line). The format of a service entry is the short name of
the host the service is associated with, followed by a semi-colon, and then the service description. An example of
the file contents would be as follows:

host1;DNS Service
host2;DNS Service
host3;DNS Service
host4;DNS Service
host5;DNS Service
host6;DNS Service

Monitoring Host Clusters

http://www.nagios.org/download/alpha/

Monitoring host clusters is very similiar to monitoring service clusters. Obviously, the main difference is that the
cluster members are hosts and not services. In order to monitor the status of a host cluster, you must define a
service that uses the check_cluster plugin. The service should not be associated with any of the hosts in the
cluster, as this will cause problems with notifications for the cluster if that host goes down. A good idea might be
to associate the service with the host that Nagios is running on. After all, if the host that Nagios is running on goes
down, then Nagios isn't running anymore, so there isn't anything you can do as far as monitoring (unless you've
setup redundant monitoring hosts)...

Anyway, let's assume that you have a check_host_cluster command defined as follows:

define command{
 command_name check_host_cluster
 command_line /usr/local/nagios/libexec/check_cluster --host $ARG1$ $ARG2$
/usr/local/nagios/var/status.log < $ARG3$
 }

Let's say you have six hosts in the host cluster. If you want Nagios to generate a warning alert if two or more
hosts in the cluster are not up or a critical alert if four or more hosts are not up, the <check_command> argument
of the service you define to monitor the cluster looks something like this:

check_host_cluster!2!4!/usr/local/nagios/etc/hostcluster.cfg

The $ARG3$ macro will be replaced with /usr/local/nagios/etc/hostcluster.cfg when the check is made. Since this
is the file from which the check_cluster plugin will read the names of cluster members, you'll need to create that
file and add the short names of all hosts (as they were defined in your host definitions) that are members (one per
line). An example of the file contents would be as follows:

host1
host2
host3
host4
host5
host6

That's it! Nagios will periodically check the status of the host cluster and send notifications to you when its status
is degraded (assuming you've enabled notification for the service). Note that for thehost definitions of each cluster
member, you will most likely want to disable notifications when the host goes down . Remeber that you don't care
as much about the status of any individual host as you do the overall status of the cluster. Depending on your
network layout and what you're trying to accomplish, you may wish to leave notifications for unreachable states
enabled for the host definitions.

Host and Service Dependencies

Introduction

Service and host dependencies are an advanced feature that allow you to control the behavior of hosts and
services based on the status of one or more other hosts or services. I'll explain how dependencies work, along
with the differences between host and service dependencies.

Service Dependencies Overview

The image below shows an example logical layout of service dependencies. There are a few things you should
notice:

1. A service can be dependent on one or more other services
2. A service can be dependent on services which are not associated with the same host
3. Service dependencies are not inherited
4. Service dependencies can be used to cause service execution and service notifications to be

suppressed under different circumstances (OK, WARNING, UNKNOWN, and/or CRITICAL states)

Defining Service Dependencies

First, the basics. You create service dependencies by adding service dependency definitions in your object
config file(s). In each definition you specify the dependent service, the service you are depending on, and the
criteria (if any) that cause the execution and notification dependencies to fail (these are described later).

You can create several dependencies for a given service, but you must add a separate service dependency
definition for each dependency you create.

In the image above, the dependency definitions for Service F on Host C would be defined as follows:

define servicedependency{

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/service-dependencies.jpg

 host_name Host B
 service_description Service D
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria o
 notification_failure_criteria n
 }

define servicedependency{
 host_name Host B
 service_description Service E
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria n
 notification_failure_criteria w,u,c
 }

define servicedependency{
 host_name Host B
 service_description Service C
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria w
 notification_failure_criteria c
 }

How Service Dependencies Are Tested

Before Nagios executes a service check or sends notifications out for a service, it will check to see if the
service has any dependencies. If it doesn't have any dependencies, the check is executed or the notification is
sent out as it normally would be. If the service does have one or more dependencies, Nagios will check each
dependency entry as follows:

1. Nagios gets the current status* of the service that is being depended upon.
2. Nagios compares the current status of the service that is being depended upon against either the

execution or notification failure options in the dependency definition (whichever one is relevant at the
time).

3. If the current status of the service that is being depended upon matches one of the failure options, the
dependency is said to have failed and Nagios will break out of the dependency check loop.

4. If the current state of the service that is being depended upon does not match any of the failure options
for the dependency entry, the dependency is said to have passed and Nagios will go on and check the
next dependency entry.

This cycle continues until either all dependencies for the service have been checked or until one dependency
check fails.

*One important thing to note is that by default, Nagios will use the most current hard state of the service(s) that
is/are being depended upon when it does the dependeny checks. If you want Nagios to use the most current
state of the services (regardless of whether its a soft or hard state), enable the soft_service_dependencies

option.

Service Execution Dependencies

If all of the execution dependency tests for the service passed, Nagios will execute the check of the service as
it normally would. If even just one of the execution dependencies for a service fails, Nagios will temporarily
prevent the execution of checks for that (dependent) service. At some point in the future the execution
dependency tests for the service may all pass. If this happens, Nagios will start checking the service again as it
normally would. More information on the check scheduling logic can be found here.

In the example above, Service E would have failed execution dependencies if Service B is in a WARNING or
UNKNOWN state. If this was the case, the service check would not be performed and the check would be
scheduled for (potential) execution at a later time.

Service Notification Dependencies

If all of the notification dependency tests for the service passed, Nagios will send notifications out for the
service as it normally would. If even just one of the notification dependencies for a service fails, Nagios will
temporarily repress notifications for that (dependent) service. At some point in the future the notification
dependency tests for the service may all pass. If this happens, Nagios will start sending out notifications again
as it normally would for the service. More information on the notification logic can be found here.

In the example above, Service F would have failed notification dependencies if Service C is in a CRITICAL
state, and/or Service D is in a WARNING or UNKNOWN state, and/or if Service E is in a WARNING,
UNKNOWN, or CRITICAL state. If this were the case, notifications for the service would not be sent out.

Service Dependency Inheritance

As mentioned before, service dependencies are not inherited. In the example above you can see that Service F
is dependent on Service E. However, it does not automatically inherit Service E's dependencies on Service B
and Service C. In order to make Service F dependent on Service C we had to add another service dependency
definition. There is no dependency definition for Service B, so Service F is not dependent on Service B. In
some cases the lack of inheritance means you're going to have to add some additional dependency definitions
in your config file, but I think it makes things much more flexible. For instance, in the example above we might
have good reason for not making Service F dependent on Service B. If dependencies were automatically
inherited, this would not be possible.

Host Dependencies

As you'd probably expect, host dependencies work in a similiar fashion to service dependencies. The big
difference is that they're for hosts, not services. Another difference is that host dependencies only work for
suppressing host notifications, not host checks.

The image below shows an example of the logical layout of host dependencies.

In the image above, the dependency definitions for Host C would be defined as follows:

define hostdependency{
 host_name Host A
 dependent_host_name Host C
 notification_failure_criteria d
 }

define hostdependency{
 host_name Host B
 dependent_host_name Host C
 notification_failure_criteria d,u
 }

As with service dependencies, host dependencies are not inherited. In the example image you can see that
Host C does not inherit the host dependencies of Host B. In order for Host C to be dependent on Host A, a new
host dependency definition must be defined.

Host notification dependencies work in a similiar manner to service dependencies. If all of the notification
dependency tests for the host pass, Nagios will send notifications out for the host as it normally would. If even
just one of the notification dependencies for a host fails, Nagios will temporarily repress notifications for that
(dependent) host. At some point in the future the notification dependency tests for the host may all pass. If this
happens, Nagios will start sending out notifications again as it normally would for the host. More information on
the notification logic can be found here.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/images/host-dependencies.jpg

State Stalking

Introduction

State "stalking" is a feature which is probably not going to used by most users. When enabled, it allows you to
log changes in service and host checks even if the state of the host or service does not change. When stalking
is enabled for a particular host or service, Nagios will watch that service very carefully and log any changes it
sees. As you'll see, it can be very helpful to you in later analysis of the log files.

How Does It Work?

Under normal circumstances, the result of a host or service check is only logged if the host or service has
changed state since it was last checked. There are a few exceptions to this, but for the most part, that's the
rule.

If you enable stalking for one or more states of a particular host or service, Nagios will log the results of the
host or service check if the output from the check differs from the output from the previous check. Take the
following example of eight consecutive checks of a service:

Service Check #: Service State: Service Check Output:
x OK RAID array optimal

x+1 OK RAID array optimal

x+2 WARNING RAID array degraded (1 drive bad, 1 hot spare rebuilding)

x+3 CRITICAL RAID array degraded (2 drives bad, 1 host spare online, 1 hot spare
rebuilding)

x+4 CRIICAL RAID array degraded (3 drives bad, 2 hot spares online)

x+5 CRITICAL RAID array failed

x+6 CRITICAL RAID array failed

x+7 CRITICAL RAID array failed

Given this sequence of checks, you would normally only see two log entries for this catastrophe. The first one
would occur at service check x+2 when the service changed from an OK state to a WARNING state. The
second log entry would occur at service check x+3 when the service changed from a WARNING state to a
CRITICAL state.

For whatever reason, you may like to have the complete history of this catasrophe in your log files. Perhaps to
help explain to your manager how quickly the situation got out of control, perhaps just to laugh at over a couple
of drinks at the local pub, whatever...

Well, if you had enabled stalking of this service for CRITICAL states, you would have events at x+4 and x+5

logged in addition to the events at x+2 and x+3. Why is this? With state stalking enabled, Nagios would have
examined the output from each service check to see if it differed from the output of the previous check. If the
output differed and the state of the service didn't change between the two checks, the result of the newer
service check would get logged.

A similiar example of stalking might be on a service that checks your web server. If the check_http plugin first
returns a WARNING state because of a 404 error and on subsequent checks returns a WARNING state
because of a particular pattern not being found, you might want to know that. If you didn't enable state stalking
for WARNING states of the service, only the first WARNING state event (the 404 error) would be logged and
you wouldn't have any idea (looking back in the archived logs) that future problems were not due to a 404, but
rather a missing pattern in the returned web page.

Should I Enable Stalking?

First, you must decide if you have a real need to analyze archived log data to find the exact cause of a problem.
You may decide you need this feature for some hosts or services, but not for all. You may also find that you
only have a need to enable stalking for some host or service states, rather than all of them. For example, you
may decide to enable stalking for WARNING and CRITICAL states of a service, but not for OK and UNKNOWN
states.

The decision to to enable state stalking for a particular host or service will also depend on the plugin that you
use to check that host or service. If the plugin always returns the same text output for a particular state, there is
no reason to enable stalking for that state.

How Do I Enable Stalking?

You can enable state stalking for hosts and services by using the stalking_options directive in host and service
definitions. This directive is currently only supported in the template-based config file format.

Caveats

You should be aware that there are some potential pitfalls with enabling stalking. These all relate to the
reporting functions found in various CGIs (histogram, alert summary, etc.). Because state stalking will cause
additional alert entries to be logged, the data produced by the reports will show evidence of inflated numbers of
alerts.

As a general rule, I would suggest that you not enable stalking for hosts and services without thinking things
through. Still, its there if you need and want it.

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html

Performance Data

Introduction

Nagios is designed to allow plugins to return optional performance data in addition to normal status data, as well
as allow you to pass that performance data to external applications for processing. A description of the different
types of performance data, as well as information on how to go about processing that data is described below...

Types of Performance Data

There are two basic categories of performance data that can be obtained from Nagios:

1. Check performance data
2. Plugin performance data

Check performance data is internal data that relates to the actual execution of a host or service check. This
might include things like service check latency (i.e. how "late" was the service check from its scheduled
execution time) and the number of seconds a host or service check took to execute. This type of performance
data is available for all checks that are performed. The $EXECUTIONTIME$ macro can be used to determine
the number of seconds a host or service check was running and the $LATENCY$ macro can be used to
determine how "late" a service check was (host checks have zero latency, as they are executed on an as-
needed basis, rather than at regularly scheduled intervals).

Plugin performance data is external data specific to the plugin used to perform the host or service check. Plugin-
specific data can include things like percent packet loss, free disk space, processor load, number of current
users, etc. - basically any type of metric that the plugin is measuring when it executes. Plugin-specific
performance data is optional and may not be supported by all plugins. As of this writing, no plugins return
performance data, although they mostly likely will in the near future. Plugin-specific performance data (if
available) can be obtained by using the $PERFDATA$ macro. See below for more information on how plugins
can return performance data to Nagios for inclusion in the $PERFDATA$ macro.

Performance Data Support For Plugins

Normally plugins return a single line of text that indicates the status of some type of measurable data. For
example, the check_ping plugin might return a line of text like the following:

PING ok - Packet loss = 0%, RTA = 0.80 ms

With this type of output, the entire line of text is available in the $OUTPUT$ macro.

In order to facilitate the passing of plugin-specific performance data to Nagios, the plugin specification has been
expanded. If a plugin wishes to pass performance data back to Nagios, it does so by sending the normal text
string that it usually would, followed by a pipe character (|), and then a string containing one or more

performance data metrics. Let's take the check_ping plugin as an example and assume that it has been
enhanced to return percent packet loss and average round trip time as performance data metrics. A sample
plugin output might look like this:

PING ok - Packet loss = 0%, RTA = 0.80 ms | percent_packet_loss=0, rta=0.80

When Nagios seems this format of plugin output it will split the output into two parts: everything before the pipe
character is considered to be the "normal" plugin output and everything after the pipe character is considered to
be the plugin-specific performance data. The "normal" output gets stored in the $OUTPUT$ macro, while the
optional performance data gets stored in the $PERFDATA$ macro. In the example above, the $OUTPUT$
macro would contain "PING ok - Packet loss = 0%, RTA = 0.80 ms" (without quotes) and the $PERFDATA$
macro would contain "percent_packet_loss=0, rta=0.80" (without quotes).

Enabling Performance Data Processing

If you want to process the performance data that is available from Nagios and the plugins, you'll need to do
three things.

First, you'll have to enable the process_performance_data option in the main config file.

Second, you'll have to compile Nagios with the proper type of performance data processing. There are currently
two options for this:

● Default method - Nagios will launch a command you define in order to process the data. This method is
the most flexible, but consumes more system resources as it requires Nagios to fork a new system
process in order to handle the performance data.

● File-based method - Performance data is dumped directly into one or more files in a manner of your
choosing. You simply define a template to be used in writing the data and Nagios will dump performance
data to the files in that format. This is less flexible that the default method, but requires far less system
resources and is much faster.

Lastly, you'll need to add any necessary directives and command definitions to your config files to start using
performance data. The exact items you'll need to add depend on what type of performance data processing
you've compiled Nagios with. Follow the link to appropriate option mentioned above to find out what you need to
do.

Post-Processing Options

I'm assuming that you're going to want to do some post-processing of the performance data that you get out of
Nagios. If not, why are you enabling performance data processing in the first place?

What you do with the performance data once its out of Nagios is completely up to you. If you are simply writing
performance data to text files, you could setup an occassional cron job to process the entries in those files,
squash them using rrdtool, dump them into a database, produce graphs, whatever...

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xpddefault.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xpdfile.html
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/

Scheduled Downtime

Introduction

Nagios allows you to schedule periods of planned downtime for hosts and service that you're monitoring. This is
useful in the event that you actually know you're going to be taking a server down for an upgrade, etc. When a
host a service is in a period of scheduled downtime, notifications for that host or service will be suppressed.

Downtime File

Scheduled host and service downtime is stored in the file you specify by the downtime_file directive in your
main configuration file.

Downtime Retention

Scheduled host and service downtime is automatically preserved across program restarts. When Nagios starts
up, it will scan the downtime file, delete any old or invalid entries, and schedule downtime for all valid host and
service entries.

Scheduling Downtime

You can schedule downtime for hosts and service through the extinfo CGI (either when viewing host or service
information). Click in the "Schedule downtime for this host/service" link to actually schedule the downtime.

Once you schedule downtime for a host or service, Nagios will add a comment to that host/service indicating
that it is scheduled for downtime during the period of time you indicated. When that period of downtime passes,
Nagios will automatically delete the comment that it added. Nice, huh?

Types of Scheduled Downtime

There are two types of scheduled downtime - "fixed" and "flexible". When you schedule downtime for a host or
service through the web interface you'll be asked if the downtime is fixed or not. Here's an explanation of how
"fixed" and "flexible" downtime differs:

"Fixed" downtime starts and stops at the exact start and end times that you specify when you schedule it. Okay,
that was easy enough...

"Flexible" downtime is intended for times when you know that a host or service is going to be down for X
minutes (or hours), but you don't know exactly when that'll start. When you schedule flexible downtime, Nagios
will start the scheduled downtime sometime between the start and end times you specified. The downtime will
last for as long as the duration you specified when you scheduled the downtime. This assumes that the host or
service for which you scheduled flexible downtime either goes down (or becomes unreachable) or goes into a
non-OK state sometime between the start and end times you specified. The time at which a host or service

transitions to a problem state determines the time at which Nagios actually starts the downtime. The downtime
will then last for the duration you specified, even if the host or service recovers before the downtime expires.
This is done for a very good reason. As we all know, you can think you've got a problem fixed (and restart a
server) ten times before it actually works right. Smart, eh?

How Scheduled Downtime Affects Notifications

When a host or service is in a period of scheduled downtime, Nagios will not allow notifications to be sent out
for the host or service. suppression of notifications is accomplished by adding an additional filter to the
notification logic. You will not see an icon in the CGIs indicating that notifications for that host/service are
disabled. When the scheduled downtime has passed, Nagios will allow notifications to be sent out for the host
or service as it normally would.

Overlapping Scheduled Downtime

I like to refer to this as the "Oh crap, its not working" syndrome. You know what I'm talking about. You take a
server down to perform a "routine" hardware upgrade, only to later realize that the OS drivers aren't working,
the RAID array blew up, or the drive imaging failed and left your original disks useless to the world. Moral of the
story is that any routine work on a server is quite likely to take three or four times as long as you had originally
planned...

Let's take the following scenario:

1. You schedule downtime for host A from 7:30pm-9:30pm on a Monday
2. You bring the server down about 7:45pm Monday evening to start a hard drive upgrade
3. After wasting an hour and a half battling with SCSI errors and driver incompatabilities, you finally get the

machine to boot up
4. At 9:15 you realize that one of your partitions is either hosed or doesn't seem to exist anywhere on the

drive
5. Knowing you're in for a long night, you go back and schedule additional downtime for host A from

9:20pm Monday evening to 1:30am Tuesday Morning.

If you schedule overlapping periods of downtime for a host or service (in this case the periods were 7:40pm-
9:30pm and 9:20pm-1:30am), Nagios will wait until the last period of scheduled downtime is over before it
allows notifications to be sent out for that host or service. In this example notifications would be suppressed for
host A until 1:30am Tuesday morning.

Database Support

(MySQL and PostgreSQL)

Index

Introduction
Out with the old...
Getting started
Compiling with MySQL support
Compiling with PostgreSQL support
Configuration Directives

● Downtime data configuration
● Comment data configuration
● Status data configuration
● Retention data configuration
● Extended data configuration

Table definitions

● Downtime data tables
● Comment data tables
● Status data tables
● Retention data tables
● Extended data tables

Introduction

This will explain how to optionally compile both the core program and the CGIs so that they natively support
storage of various types of data in one or more databases. Currently only MySQL and PostgreSQL databases
are supported, although more may be supported in the future.

Out With The Old...

Okay, before we go ahead and get into the details of the database integration stuff, you need to understand
something. The default method for storing status data, comments, etc. in Nagios is (and probably will continue
to be) in plain old text files. The standard files used by the default external data routines include the status file,
downtime file, comment file, and the state_retention file. With the default install, extended host and service

information is not stored in its own file, but in extended host and service information definitions in the CGI
configuration file.

Assuming you plan on using a database to store some or all external data, a few things are obviously going to
change. Data will no longer be stored in text files, but rather in one or more databases. Since I don't feel like
rewriting a lot of documentation, you're going to have to make a mental transition. You'll need to realize that
status information is no longer stored in the status log, but rather in a few tables in a database somewhere.
Same thing applies for other types of external data (downtime data, comments, retention information, and
extended host information).

Getting Started

First off, I assume you've got a MySQL or PostgreSQL database server up and running on your network
somewhere and you've got the appropriate client libraries installed on the same machine where you're going to
compile and run Nagios. I'm also assumimg you're familiar with creating databases and tables and managing
accounts and security in the particular database system(s) you're going to use. If you're not, go out and learn
before you attempt to compile Nagios with database support.

Very Important Note: Once you (re)run the configure script to add support for database storage (as will be
described below), make sure you recompile both the core program and all the CGIs (using the make all
command)!!

Compiling With MySQL Support

In order to support storage of various types of data in MySQL, you're going to have to supply one or more
options to the configure script.

You have a few options here. First, you need to decide what data you want to keep in MySQL and what (if any)
you want to leave in the older format (text files). Use the table below to determine what options you'll need to
supply to the configure script once you determine your needs. Note: MySQL support for storage of object data
(service, host, and command definitions, etc) is not yet supported.

Data Type Configure Script Option Comments

All types --with-mysql-xdata

This will compile in MySQL support for all types of external data
(downtime data, comment data, status data, retention data, and
extended data). Support for object data (service and host
definitions, etc.) is as of yet non-existent.

Comment data --with-mysql-downtime
This will compile in MySQL support for downtime data (it will
replace the standard downtime file)

Comment data --with-mysql-comments
This will compile in MySQL support for comment data (it will
replace the standard comment file)

Status data --with-mysql-status
This will compile in MySQL support for status data (it will replace
the standard status log)

http://www.mysql.com/
http://www.postgresql.org/

Retention data --with-mysql-retention
This will compile in MySQL support for retention data (it will
replace the standard state_retention file)

Extended data --with-mysql-extinfo
This will compile in MySQL support for extended data (it will
replace the standard hostextinfo[] and serviceextinfo[] definitions
in the CGI config file)

Compiling With PostgreSQL Support

In order to support storage of various types of data in PostgreSQL, you're going to have to supply one or more
options to the configure script.

You have a few options here. First, you need to decide what data you want to keep in PostgreSQL and what (if
any) you want to leave in the older format (text files) or possibly in MySQL. Use the table below to determine
what options you'll need to supply to the configure script once you determine your needs. Note: PostgreSQL
support for storage of object data (service, host, and command definitions, etc) is not yet supported.

Data Type Configure Script Option Comments

All types --with-pgsql-xdata

This will compile in PostgreSQL support for all types of external
data (downtime data, comment data, status data, retention data,
and extended data). Support for object data (service and host
definitions, etc.) is as of yet non-existent.

Comment data --with-pgsql-downtime
This will compile in PostgreSQL support for downtime data (it will
replace the standard downtime file)

Comment data --with-pgsql-comments
This will compile in PostgreSQL support for comment data (it will
replace the standard comment file)

Status data --with-pgsql-status
This will compile in PostgreSQL support for status data (it will
replace the standard status log)

Retention data --with-pgsql-retention
This will compile in PostgreSQL support for retention data (it will
replace the standard state_retention file)

Extended data --with-pgsql-extinfo
This will compile in PostgreSQL support for extended data (it will
replace the standard hostextinfo[] and serviceextinfo[] definitions
in the CGI config file)

Configuration Directives

Once you decide what types of external data you want to store in one or more databases, you'll have to add
some configuration directives to the resource file and/or the CGI config file. Here we go...

Configuration Directives For Downtime Data: (--with-mysql-downtime or --with-pgsql-downtime options):

In the CGI config file, you need to add the following directives (the downtime_file directive in the main
configuration file is no longer used)...

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xeddefault.html#hostextinfo
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xeddefault.html#serviceextinfo
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xeddefault.html#hostextinfo
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xeddefault.html#serviceextinfo

xdddb_host=database_host
xdddb_port=database_port
xdddb_username=database_user
xdddb_password=database_password
xdddb_database=database_name

These are fairly self-explanatory. They are used by the CGIs to identify the address of your database server
(and the port it is running on), the name of the database in which the downtime entries should be stored, and
the username/password that should be used when connecting to the databse server. Nagios will assume that
two tables (as defined here) exist in this database for storage of downtime data. Note: The CGIs only need
read access to the downtime data, so this user should only have SELECT privileges on the comment tables.

In a resource file, you need to add the following directives...

xdddb_host=database_host
xdddb_port=database_port
xdddb_username=database_user
xdddb_password=database_password
xdddb_database=database_name
xdddb_optimize_data=[0/1]

There directives are identical to the ones you added to the CGI config file, except these are used by the Nagios
process. The database user you specify here needs to have SELECT, INSERT, UPDATE, and DELETE
privileges on the downtime tables. The CGIs do not attempt to read the contents of any resource files, so you
can set restrictive permissions on them and make sure that no one other than the Nagios process can read
them. The xdddb_optimize_data option will force Nagios to optimize data in the downtime tables when it
starts/restarts. If you're using PostgreSQL DB support for downtime data, this means that a VACUUM is run on
the downtime tables.

Configuration Directives For Comment Data: (--with-mysql-comments or --with-pgsql-comments options):

In the CGI config file, you need to add the following directives (the comment_file directive in the main
configuration file is no longer used)...

xcddb_host=database_host
xcddb_port=database_port
xcddb_username=database_user
xcddb_password=database_password
xcddb_database=database_name

These are fairly self-explanatory. They are used by the CGIs to identify the address of your database server
(and the port it is running on), the name of the database in which the comments should be stored, and the
username/password that should be used when connecting to the databse server. Nagios will assume that two
tables (as defined here) exist in this database for storage of comment data. Note: The CGIs only need read
access to the comments, so this user should only have SELECT privileges on the comment tables.

In a resource file, you need to add the following directives...

xcddb_host=database_host
xcddb_port=database_port
xcddb_username=database_user
xcddb_password=database_password
xcddb_database=database_name
xcddb_optimize_data=[0/1]

There directives are identical to the ones you added to the CGI config file, except these are used by the Nagios
process. The database user you specify here needs to have SELECT, INSERT, UPDATE, and DELETE
privileges on the comment tables. The CGIs do not attempt to read the contents of any resource files, so you
can set restrictive permissions on them and make sure that no one other than the Nagios process can read
them. The xcddb_optimize_data option will force Nagios to optimize data in the comment tables when it
starts/restarts. If you're using PostgreSQL DB support for comments, this means that a VACUUM is run on the
comment data tables.

Configuration Directives For Status Data: (--with-mysql-status or --with-pgsql-status options):

In the CGI config file, you need to add the following directives (the status_file directive in the main configuration
file is no longer used)...

xsddb_host=database_host
xsddb_port=database_port
xsddb_username=database_user
xsddb_password=database_password
xsddb_database=database_name

These are fairly self-explanatory. They are used by the CGIs to identify the address of your database server
(and the port it is running on), the name of the database in which the status data should be stored, and the
username/password that should be used when connecting to the database. Nagios will assume that three
tables (as defined here) exist in this database for storage of status data. Note: The CGIs only need read
access to the status data, so the database user you specify here should only have SELECT privileges on the
status tables.

In a resource file, you need to add the following directives...

xsddb_host=database_host
xsddb_port=database_port
xsddb_username=database_user
xsddb_password=database_password
xsddb_database=database_name
xsddb_optimize_data=[0/1]
xsddb_optimize_interval=seconds

These directives are used by the Nagios process instead of the CGIs. The only difference between these
directives and those found in the CGI config file is the fact that the database user you specify here needs to

have SELECT, INSERT, UPDATE, and DELETE privileges on the status tables. The CGIs do not attempt to
read the contents of any resource files, so you can set restrictive permissions on them and make sure that no
one other than the Nagios process can read them. The xsddb_optimize_data option will force Nagios to
periodically optimize data in the status tables. The frequency of optimization is determined by the number of
seconds specified by the xsddb_optimize_interval option. If you're using PostgreSQL DB support for status
data, this means that a VACUUM is run on the status data tables.

Configuration Directives For Retention Data: (--with-mysql-retention or --with-pgsql-retention options):

In a resource file, you need to add the following directives (the state_retention_file directive in the main config
file is no longer used)...

xrddb_host=database_host
xrddb_port=database_port
xrddb_username=database_user
xrddb_password=database_password
xrddb_database=database_name
xrddb_optimize_data=[0/1]

These are fairly self-explanatory. They are used by the Nagios process to identify the address of your database
server (and the port it is running on), the name of the database in which the retention data should be stored,
and the username/password that should be used when connecting to the database. Nagios will assume that
three tables (as defined here) exist in this database for storage of retention data. The user you specify here
needs to have SELECT, INSERT, UPDATE, and DELETE privileges on the retention tables. The CGIs do not
attempt to read the contents of any resource files, so you can set restrictive permissions on them and make
sure that no one other than the Nagios process can read them. The xrddb_optimize_data option will force
Nagios to optimize data in the retention tables when it starts/restarts. If you're using PostgreSQL DB support for
retention data, this means that a VACUUM is run on the retention data tables.

Configuration Directives For Extended Data: (--with-mysql-extinfo or --with-pgsql-extinfo options):

In the CGI config file, you need to add the following directives (the hostextino[] and serviceextinfo[] directives in
the CGI config file are no longer used)...

xeddb_host=database_host
xeddb_port=database_port
xeddb_username=database_user
xeddb_password=database_password
xeddb_database=database_name

These are fairly self-explanatory. They are used by the CGIs to identify the address of your database server
(and the port it is running on), the name of the database in which the extended data is stored, and the
username/password that should be used when connecting to the database. Nagios will assume that two tables
(as defined here) exists in this database for storage of extended data. The user you specify here should only
have SELECT privileges on the extended info tables.

Table Definitions

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xeddefault.html#hostextinfo
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xeddefault.html#serviceextinfo

In order to read from or write to a database, you first have to create it and setup some tables to hold your data.
Note: If you are storing more than one type of external data in databases, you could create separate databases
for each type of data (comments, status info, etc.) You could also keep everything in a single database
(different data is kept in different tables). In your database(s) you're going to have to setup the appropriate
table(s) so Nagios can actually read/write data.

Important: Scripts for creating tables for all types of external data for both MySQL and PostgreSQL databases
can be found in the contrib/database/ directory of the distribution.

Downtime Data Tables:

There are two tables (named hostdowntime and servicedowntime) you need to create in order to store
downtime entries in a database. One of the tables is used to store host downtime and the other for service
downtime. The CGIs only need SELECT rights on these tables, while the main Nagios process needs SELECT,
INSERT, UPDATE, and DELETE privileges.

Comment Data Tables:

There are two tables (named hostcomments and servicecomments) you need to create in order to store
comments in a database. One of the tables is used to store host comments and the other for service
comments. The CGIs only need SELECT rights on these tables, while the main Nagios process needs
SELECT, INSERT, UPDATE, and DELETE privileges.

Status Data Tables:

There are three tables (named programstatus, hoststatus, and servicestatus) you need to create in order to
store status data in a database. One of the tables is used to store program status data, one for host status
data, and another for service status data. The CGIs only need SELECT rights on these tables, while the main
process needs SELECT, INSERT, UPDATE, and DELETE privileges.

Retention Data Tables:

There are three tables (named programretention, hostretention, and serviceretention) you need to create in
order to store retention data in a database. One is used to store program data, one for host data, and another
for service data. The main process needs SELECT, INSERT, UPDATE, and DELETE privileges on these
tables. The CGIs do not access these tables at all.

Extended Data Tables:

There are two tables (named hostextinfo and serviceextinfo) you need to create in order to store extended
data in a database. One table is used to store extended host information and the other for extended service
information (used by the CGIs). The CGIs need SELECT privileges on these tables. The main Nagios process
does not access these tables at all.

Using The Embedded Perl Interpreter

Introduction

Stephen Davies has contributed code that allows you to compile Nagios with an embedded Perl interpreter. This may
be of interest to you if you rely heavily on plugins written in Perl.

Stanley Hopcroft has worked with the embedded Perl interpreter quite a bit and has commented on the
advantages/disadvanges of using it. He has also given several helpful hints on creating Perl plugins that work properly
with the embedded interpreter. The majority of this documentation comes from his comments.

It should be noted that "ePN", as used in this documentation, refers to embedded Perl Nagios, or if you prefer, Nagios
compiled with an embedded Perl interpreter.

Advantages

Some advantages of ePN (embedded Perl Nagios) include:

● Nagios will spend much less time running your Perl plugins because it no longer forks to execute the plugin
(each time loading the Perl interpreter). Instead, it executes your plugin by making a library call.

● It greatly reduces the system impact of Perl plugins and/or allows you to run more checks with Perl plugin than
you otherwise would be able to. In other words, you have less incentive to write plugins in other languages
such as C/C++, or Expect/TCL, that are generally recognised to have development times at least an order of
magnitude slower than Perl (although they do run about ten times faster also - TCL being an exception).

● If you are not a C programmer, then you can still get a huge amount of mileage out of Nagios by letting Perl do
all the heavy lifting without having Nagios slow right down. Note however, that the ePN will not speed up your
plugin (apart from eliminating the interpreter load time). If you want fast plugins then consider Perl XSUBs (XS),
or C after you are sure that your Perl is tuned and that you have a suitable algorithm (Benchmark.pm is
invaluable for comparing the performance of Perl language elements).

● Using the ePN is an excellentt opportunity to learn more about Perl.

Disadvantages

The disadvantages of ePN (embedded Perl Nagios) are much the same as Apache mod_perl (i.e. Apache with an
embedded interpreter) compared to a plain Apache:

● A Perl program that works fine with plain Nagios may not work with the ePN. You may have to modify your
plugins to get them to work.

● Perl plugins are harder to debug under an ePN than under a plain Nagios.

● Your ePN will have a larger SIZE (memory footprint) than a plain Nagios.

● Some Perl constructs cannot be used or may behave differently than what you would expect.

● You may have to be aware of 'more than one way to do it' and choose a way that seems less attractive or
obvious.

● You will need greater Perl knowledge (but nothing very esoteric or stuff about Perl internals - unless your plugin
uses XSUBS).

Target Audience

● Average Perl developers; those with an appreciation of the languages powerful features without knowledge of
internals or an in depth knowledge of those features.

● Those with a utilitarian appreciation rather than a great depth of understanding.

● If you are happy with Perl objects, name management, data structures, and the debugger, that's probably
sufficient.

Things you should do when developing a Perl Plugin (ePN or not)

● Always always generate some output

● Use 'use utils' and import the stuff it exports ($TIMEOUT %ERRORS &print_revision &support)

● Have a look at how the standard Perl plugins do their stuff e.g.

❍ Always exit with $ERRORS{CRITICAL}, $ERRORS{OK}, etc.
❍ Use getopt to read command line arguments
❍ Manage timeouts
❍ Call print_usage (supplied by you) when there are no command line arguments
❍ Use standard switch names (eg H 'host', V 'version')

Things you must do to develop a Perl plugin for ePN

1. <DATA> can not be used; use here documents instead e.g.

my $data = <<DATA;
portmapper 100000
portmap 100000
sunrpc 100000
rpcbind 100000
rstatd 100001
rstat 100001
rup 100001
..
DATA

%prognum = map { my($a, $b) = split; ($a, $b) } split(/\n/, $data) ;

2. BEGIN blocks will not work as you expect. May be best to avoid.

3. Ensure that it is squeaky clean at compile time i.e.

❍ use strict
❍ use perl -w (other switches [T notably] may not help)
❍ use perl -c

4. Avoid lexical variables (my) with global scope as a means of passing __variable__ data into subroutines. In fact
this is __fatal__ if the subroutine is called by the plugin more than once when the check is run. Such
subroutines act as 'closures' that lock the global lexicals first value into subsequent calls of the subroutine. If
however, your global is read-only (a complicated structure for example) this is not a problem. What Bekman
recommends you do instead, is any of the following:

❍ make the subroutine anonymous and call it via a code ref e.g.

turn this into

my $x = 1 ; my $x = 1 ;
sub a { .. Process $x ... } $a_cr = sub { ... Process $x ... } ;
. .
. .
a ; &$a_cr ;
$x = 2 $x = 2 ;
a ; &$a_cr ;

anon closures __always__ rebind the current lexical value

❍ put the global lexical and the subroutine using it in their own package (as an object or a module)
❍ pass info to subs as references or aliases (\$lex_var or $_[n])
❍ replace lexicals with package globals and exclude them from 'use strict' objections with 'use vars

qw(global1 global2 ..)'

5. Be aware of where you can get more information.

Useful information can be had from the usual suspects (the O'Reilly books, plus Damien Conways
"Object Oriented Perl") but for the really useful stuff in the right context start at Stas Bekman's mod_perl
guide at http://perl.apache.org/guide/.

This wonderful book sized document has nothing whatsoever about Nagios, but all about writing Perl
programs for the embedded Perl interpreter in Apache (ie Doug MacEacherns mod_perl).

The perlembed manpage is essential for context and encouragement.

On the basis that Lincoln Stein and Doug MacEachern know a thing or two about Perl and embedding
Perl, their book 'Writing Apache Modules with Perl and C' is almost certainly worth looking at.

6. Be aware that your plugin may return strange values with an ePN and that this is likely to be caused by the
problem in item #4 above

7. Be prepared to debug via:

❍ having a test ePN and

http://perl.apache.org/guide/
http://perl.apache.org/guide/

❍ adding print statements to your plugin to display variable values to STDERR (can't use STDOUT)
❍ adding print statements to p1.pl to display what ePN thinks your plugin is before it tries to run it (vi)
❍ running the ePN in foreground mode (probably in conjunction with the former recommendations)
❍ use the 'Deparse' module on your plugin to see how the parser has optimised it and what the interpreter

will actually get. (see 'Constants in Perl' by Sean M. Burke, The Perl Journal, Fall 2001)

perl -MO::Deparse <your_program>

8. Be aware of what ePN is transforming your plugin too, and if all else fails try and debug the transformed
version.

As you can see below p1.pl rewrites your plugin as a subroutine called 'hndlr' in the package named
'Embed::<something_related_to_your_plugin_file_name>'.

Your plugin may be expecting command line arguments in @ARGV so pl.pl also assigns @_ to
@ARGV.

This in turn gets 'eval' ed and if the eval raises an error (any parse error and run error), the plugin gets
chucked out.

The following output shows how a test ePN transformed the check_rpc plugin before attempting to
execute it. Most of the code from the actual plugin is not shown, as we are interested in only the
transformations that the ePN has made to the plugin). For clarity, transformations are shown in red:

 package main;
 use subs 'CORE::GLOBAL::exit';
 sub CORE::GLOBAL::exit { die "ExitTrap: $_[0]
(Embed::check_5frpc)"; }
 package Embed::check_5frpc; sub hndlr { shift(@_);
@ARGV=@_;
#! /usr/bin/perl -w
#
check_rpc plugin for netsaint
#
usage:
check_rpc host service
#
Check if an rpc serice is registered and running
using rpcinfo - $proto $host $prognum 2>&1 |";
#
Use these hosts.cfg entries as examples
#
command[check_nfs]=/some/path/libexec/check_rpc $HOSTADDRESS$ nfs
service[check_nfs]=NFS;24x7;3;5;5;unix-admin;60;24x7;1;1;1;;check_rpc
#
initial version: 3 May 2000 by Truongchinh Nguyen and Karl DeBisschop
current status: $Revision: 1.12 $
#
Copyright Notice: GPL
#
... rest of plugin code goes here (it was removed for brevity) ...

}

9. Don't use 'use diagnostics' in a plugin run by your production ePN. I think it causes__all__ the Perl plugins to
return CRITICAL.

10. Consider using a mini embedded Perl C program to check your plugin. This is not sufficient to guarantee your
plugin will perform Ok with an ePN but if the plugin fails this test it will ceratinly fail with your ePN. [A sample
mini ePN is included in the contrib/ directory of the Nagios distribution for use in testing Perl plugins. Change to
the contrib/ directory and type 'make mini_epn' to compile it. It must be executed from the same directory that
the p1.pl file resides in (this file is distributed with Nagios).]

Compiling Nagios With The Embedded Perl Interpreter

Okay, you can breathe again now. So do you still want to compile Nagios with the embedded Perl interpreter? ;-)

If you want to compile Nagios with the embedded Perl interpreter you need to rerun the configure script with the
addition of the --enable-embedded-perl option. If you want the embedded interpreter to cache internally compiled
scripts, add the --with-perlcache option as well. Example:

 ./configure --enable-embedded-perl --with-perlcache ...other options...

Once you've rerun the configure script with the new options, make sure to recompile Nagios. You can check to make
sure that Nagios has been compile with the embedded Perl interpreter by executing it with the -m command-line
argument. Output from executing the command will look something like this (notice that the embedded perl interpreter
is listed in the options section):

 [nagios@firestore]# ./nagios -m

 Nagios 1.0a0
 Copyright (c) 1999-2001 Ethan Galstad (nagios@nagios.org)
 Last Modified: 07-03-2001
 License: GPL

 External Data I/O

 Object Data: DEFAULT
 Status Data: DEFAULT
 Retention Data: DEFAULT
 Comment Data: DEFAULT
 Downtime Data: DEFAULT
 Performance Data: DEFAULT

 Options

 * Embedded Perl compiler (With caching)

Object Inheritence Using Template-Based Config Data

Introduction

One of my primary motivations for adding support for template-based configuration data was its ability to easily
allow object definitions to inherit various properties from other object definitions. Object property inheritence is
accomplished through recursion when Nagios processes your configuration files.

This documentation attempts to explain recursion and inheritence in object definitions that is available when
you compile Nagios with support for template-based object configuration data. It should be noted that the
recursion and inheritence principles described here also apply to template-based extended information data.

If you are still confused about how recursion and inheritence work after reading this, take a look at the sample
template-base config files provided in the distribution. If that still doesn't help, drop an email message with a
detailed description of your problem to the nagios-users mailing list.

Basics

There are three variables affecting recursion and inheritence that are present in all object definitions. They are
as follows...

 define someobjecttype{

 object-specific variables ...

 name template_name
 use name_of_template_to_use
 register [0/1]
 }

The first variable is name. Its just a "template" name that can be referenced in other object definitions so they
can inherit the objects properties/variables. Template names must be unique amongst objects of the same
type, so you can't have two or more host definitions that have "hosttemplate" as their template name.

The second variable is use. This is where you specify the name of the template object that you want to inherit
properties/variables from. The name you specify for this variable must be defined as another object's template
named (using the name variable).

The third variable is register. This variable is used to indicate whether or not the object definition should be
"registered" with Nagios. By default, all object definitions are registered. If you are using a partial object
definition as a template, you would want to prevent it from being registered (an example of this is provided
later). Values are as follows: 0 = do NOT register object definition, 1 = register object definition (this is the
default).

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xedtemplate.html

Local Variables vs. Inherited Variables

One important thing to understand with inheritance is that "local" object variables always take precedence over
variables defined in the template object. Take a look at the following example of two host definitions (not all
required variables have been supplied):

 define host{
 host_name bighost1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name hosttemplate1
 }

 define host{
 host_name bighost2
 max_check_attempts 3
 use hosttemplate1
 }

You'll note that the definition for host bighost1 has been defined as having hosttemplate1 as its template name.
The definition for host bighost2 is using the definition of bighost1 as its template object. Once Nagios processes
this data, the resulting definition of host bighost2 would be equivalent to this definition:

 define host{
 host_name bighost2
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
 }

You can see that the check_command and notification_options variables were inherited from the template
object (where host bighost1 was defined). However, the host_name and max_check_attempts variables were
not inherited from the template object because they were defined locally. Remember, locally defined variables
override variables that would normally be inherited from a template object. That should be a fairly easy concept
to understand.

Inheritence Chaining

Objects can inherit properties/variables from multiple levels of template objects. Take the following example:

 define host{
 host_name bighost1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name hosttemplate1
 }

 define host{
 host_name bighost2
 max_check_attempts 3
 use hosttemplate1
 name hosttemplate2
 }

 define host{
 host_name bighost3
 use hosttemplate2
 }

You'll notice that the definition of host bighost3 inherits variables from the definition of host bighost2, which in
turn inherits variables from the definition of host bighost1. Once Nagios processes this configuration data, the
resulting host definitions are equivalent to the following:

 define host{
 host_name bighost1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 }

 define host{
 host_name bighost2
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
 }

 define host{
 host_name bighost3
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
 }

There is no inherent limit on how "deep" inheritance can go, but you'll probably want to limit yourself to at most
a few levels in order to maintain sanity.

Using Incomplete Object Definitions as Templates

It is possible to use imcomplete object definitions as templates for use by other object definitions. By
"incomplete" definition, I mean that all required variables in the object have not been supplied in the object
definition. It may sound odd to use incomplete definitions as templates, but it is in fact recommended that you
use them. Why? Well, they can serve as a set of defaults for use in all other object definitions. Take the
following example:

 define host{
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name generichosttemplate
 register 0
 }

 define host{
 host_name bighost1
 address 192.168.1.3
 use generichosthosttemplate
 }

 define host{
 host_name bighost2
 address 192.168.1.4
 use generichosthosttemplate
 }

Notice that the first host definition is incomplete because it is missing the required host_name variable. We
don't need to supply a host name because we just want to use this definition as a generic host template. In
order to prevent this definition from being registered with Nagios as a normal host, we set the register variable
to 0.

The definitions of hosts bighost1 and bighost2 inherit their values from the generic host definition. The only
variable we've chosed to override is the address variable. This means that both hosts will have the exact same
properties, except for their host_name and address variables. Once Nagios processes the config data in the
example, the resulting host definitions would be equivalent to specifying the following:

 define host{
 host_name bighost1
 address 192.168.1.3
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 }

 define host{
 host_name bighost2
 address 192.168.1.4
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 }

At the very least, using a template definition for default variables will save you a lot of typing. It'll also save you
a lot of headaches later if you want to change the default values of variables for a large number of hosts.

Time-Saving Tricks For Template-Based Object Definitions

or...
"How To Preserve Your Sanity"

Introduction

This documentation attempts to explain how you can exploit the (somewhat) hidden features template-based
object definitions to save your sanity. How so, you ask? Several types of objects allow you to specify multiple
host names and/or hostgroup names in definitions, allowing you to "copy" the object defintion to multiple hosts
or services. I'll cover each type of object that supports these features seperately. For starters, the object types
which support this time-saving feature are as follows:

● Services
● Service escalations
● Service dependencies
● Host escalations
● Host dependencies
● Hostgroups
● Hostgroup escalations

Object types that are not listed above (i.e. timeperiods, commands, etc.) do not support the features I'm about
to describe.

Services

Multiple Hosts: If you want to create identical services that are assigned to multiple hosts, you can specify
multiple hosts in the host_name directive as follows:

 define service{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 service_description SOMESERVICE
 other service directives ...
 }

The definition above would create a service called SOMESERVICE on hosts HOST1 through HOSTN. All the
instances of the SOMESERVICE service would be identical (i.e. have the same check command, max check
attempts, notification period, etc.).

All Hosts In Multiple Hostgroups: If you want to create identical services that are assigned to all hosts in one
or more hostgroups, you can do so by creating a single service definition. How? The hostgroup_name directive
allows you to specify the name of one or more hostgroups that the service should be created for:

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html#service

 define service{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 service_description SOMESERVICE
 other service directives ...
 }

The definition above would create a service called SOMESERVICE on all hosts that are members of
hostgroups HOSTGROUP1 through HOSTGROUPN. All the instances of the SOMESERVICE service would be
identical (i.e. have the same check command, max check attempts, notification period, etc.).

All Hosts: If you want to create identical services that are assigned to all hosts that are defined in your
configuration files, you can use a wildcard in the host_name directive as follows:

 define service{
 host_name *
 service_description SOMESERVICE
 other service directives ...
 }

The definition above would create a service called SOMESERVICE on all hosts that are defined in your
configuration files. All the instances of the SOMESERVICE service would be identical (i.e. have the same
check command, max check attempts, notification period, etc.).

Service Escalations

Multiple Hosts: If you want to create service escalations for services of the same name/description that are
assigned to multiple hosts, you can specify multiple hosts in the host_name directive as follows:

 define serviceescalation{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 service_description SOMESERVICE
 other escalation directives ...
 }

The definition above would create a service escalation for services called SOMESERVICE on hosts HOST1
through HOSTN. All the instances of the service escalation would be identical (i.e. have the same contact
groups, notification interval, etc.).

All Hosts In Multiple Hostgroups: If you want to create service escalations for services of the same
name/description that are assigned to all hosts in in one or more hostgroups, you can do use the
hostgroup_name directive as follows:

 define serviceescalation{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 service_description SOMESERVICE
 other escalation directives ...
 }

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html#serviceescalation

The definition above would create a service escalation for services called SOMESERVICE on all hosts that are
members of hostgroups HOSTGROUP1 through HOSTGROUPN. All the instances of the service escalation
would be identical (i.e. have the same contact groups, notification interval, etc.).

All Hosts: If you want to create identical service escalations for services of the same name/description that are
assigned to all hosts that are defined in your configuration files, you can use a wildcard in the host_name
directive as follows:

 define serviceescalation{
 host_name *
 service_description SOMESERVICE
 other escalation directives ...
 }

The definition above would create a service escalation for all services called SOMESERVICE on all hosts that
are defined in your configuration files. All the instances of the service escalation would be identical (i.e. have
the same contact groups, notification interval, etc.).

Multiple Services: If you want to create service escalations for all services assigned to a particular host, you
can use a wildcard in the service_description directive as follows:

 define serviceescalation{
 host_name HOST1
 service_description *
 other escalation directives ...
 }

The definition above would create a service escalation for all services on host HOST1. All the instances of the
service escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

If you feel like being particularly adventurous, you can specify a wildcard in both the host_name and
service_description directives. Doing so would create a service escalation for all services that you've defined
in your configuration files.

Service Dependencies

Multiple Hosts: If you want to create service dependencies for services of the same name/description that are
assigned to multiple hosts, you can specify multiple hosts in the host_name and or dependent_host_name
directives as follows:

 define servicedependency{
 host_name HOST1,HOST2
 service_description SERVICE1
 dependent_host_name HOST3,HOST4
 dependent_service_description SERVICE2

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html#serviceescalation
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html#servicedependency

 other dependency directives ...
 }

In the example above, service SERVICE2 on hosts HOST3 and HOST4 would be dependent on service
SERVICE1 on hosts HOST1 and HOST2. All the instances of the service dependencies would be identical
except for the host names (i.e. have the same notification failure criteria, etc.).

All Hosts In Multiple Hostgroups: If you want to create service dependencies for services of the same
name/description that are assigned to all hosts in in one or more hostgroups, you can do use the
hostgroup_name and/or dependent_hostgroup_name directives as follows:

 define servicedependency{
 hostgroup_name HOSTGROUP1,HOSTGROUP2
 service_description SERVICE1
 dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
 dependent_service_description SERVICE2
 other dependency directives ...
 }

In the example above, service SERVICE2 on all hosts in hostgroups HOSTGROUP3 and HOSTGROUP4
would be dependent on service SERVICE1 on all hosts in hostgroups HOSTGROUP1 and HOSTGROUP2.
Assuming there were five hosts in each of the hostgroups, this definition would be equivalent to creating 100
single service dependency definitions! All the instances of the service dependency would be identical except for
the host names (i.e. have the same notification failure criteria, etc.).

Multiple Services: If you want to create service dependencies for all services assigned to a particular host,
you can use a wildcard in the service_description and/or dependent_service_description directives as follows:

 define servicedependency{
 host_name HOST1
 service_description *
 dependent_host_name HOST2
 dependent_service_description *
 other dependency directives ...
 }

In the example above, all services on host HOST2 would be dependent on all services on host HOST1. All
the instances of the service dependencies would be identical (i.e. have the same notification failure criteria,
etc.).

Host Escalations

Multiple Hosts: If you want to create host escalations for multiple hosts, you can specify multiple hosts in the
host_name directive as follows:

 define hostescalation{
 host_name HOST1,HOST2,HOST3,...,HOSTN

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html#hostescalation

 other escalation directives ...
 }

The definition above would create a host escalation for hosts HOST1 through HOSTN. All the instances of the
host escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

All Hosts In Multiple Hostgroups: If you want to create host escalations for all hosts in in one or more
hostgroups, you can do use the hostgroup_name directive as follows:

 define hostescalation{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 other escalation directives ...
 }

The definition above would create a host escalation on all hosts that are members of hostgroups
HOSTGROUP1 through HOSTGROUPN. All the instances of the host escalation would be identical (i.e. have
the same contact groups, notification interval, etc.).

All Hosts: If you want to create identical host escalations for all hosts that are defined in your configuration
files, you can use a wildcard in the host_name directive as follows:

 define hostescalation{
 host_name *
 other escalation directives ...
 }

The definition above would create a hosts escalation for all hosts that are defined in your configuration files. All
the instances of the host escalation would be identical (i.e. have the same contact groups, notification interval,
etc.).

Host Dependencies

Multiple Hosts: If you want to create host dependencies for multiple hosts, you can specify multiple hosts in
the host_name and/or dependent_host_name directives as follows:

 define hostdependency{
 host_name HOST1,HOST2
 dependent_host_name HOST3,HOST4,HOST5
 other dependency directives ...
 }

The definition above would be equivalent to creating six seperate host dependencies. In the example above,
hosts HOST3, HOST4 and HOST5 would be dependent upon both HOST1 and HOST2. All the instances of the
host dependencies would be identical except for the host names (i.e. have the same notification failure criteria,
etc.).

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html#hostdependency

All Hosts In Multiple Hostgroups: If you want to create host escalations for all hosts in in one or more
hostgroups, you can do use the hostgroup_name and /or dependent_hostgroup_name directives as follows:

 define hostdependency{
 hostgroup_name HOSTGROUP1,HOSTGROUP2
 dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
 other dependency directives ...
 }

In the example above, all hosts in hostgroups HOSTGROUP3 and HOSTGROUP4 would be dependent on all
hosts in hostgroups HOSTGROUP1 and HOSTGROUP2. All the instances of the host dependencies would be
identical except for host names (i.e. have the same notification failure criteria, etc.).

Hostgroups

All Hosts: If you want to create a hostgroup that has all hosts that are defined in your configuration files as
members, you can use a wildcard in the members directive as follows:

 define hostgroup{
 hostgroup_name HOSTGROUP1
 members *
 other hostgroup directives ...
 }

The definition above would create a hostgroup called HOSTGROUP1 that has all all hosts that are defined in
your configuration files as members.

Hostgroup Escalations

Multiple Hostgroups: If you want to create identical hostgroup escalations that are assigned to multiple
hostgroups, you can specify multiple hostgroups in the hostgroup_name directive as follows:

 define hostgroupescalation{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 other escalation directives ...
 }

The definition above would create a seperate hostgroup escalation for hostgroups HOSTGROUP1 through
HOSTGROUPN. All the instances of the hostgroup escalation would be identical (i.e. contact groups,
notification interval, etc.).

file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/xodtemplate.html#hostgroupescalation

Portsentry Integration

Introduction

This example explains how to easily generate alerts in Nagios for port scan that are detected by Psionic Software's Portsentry software.
These directions assume that the host which you are generating alerts for (i.e. the host you are running Portsentry on) is not the same
host on which Nagios is running. If you want to generate alerts on the same host that Nagios is running you will need to make a few
modifications to the examples I provide. Also, I am assuming that you having installed the nsca daemon on your monitoring server and
the nsca client (send_nsca) on the machine that you are running Portsentry on.

Defining The Service

First off you're going to have to define a service in your object configuration file for the port scan alerts. Assuming that the host that the
alerts are originating from is called firestorm, a sample service definition might look something like this:

define service{
 host_name firestorm
 service_description Port Scans
 is_volatile 1
 active_checks_enabled 0
 passive_checks_enabled 1
 max_check_attempts 1
 contact_groups security-admins
 notification_interval 120
 notification_period 24x7
 notification_options w,u,c,r
 check_command check_none
 }

Important things to note are the fact that this service has the volatile option enabled. We want this option enabled because we want a
notification to be generated for every alert that comes in. Also of note is the fact that active checks are disabled for the service. The
command used in the check_command option is not really used at all - its just there to keep Nagios from complaining. Passive checks
are enabled however, as all port scan alert information will have to be sent in passively by the nsca client from the firestorm host.

Configuring Portsentry

In order to get Portsentry to send an alert to your monitoring box when it detects a port scan, you'll need to define a command for the
KILL_RUN_CMD option in the Portsentry config file (portsentry.conf). It should look something like the following:

KILL_RUN_CMD="/usr/local/nagios/libexec/eventhandlers/handle_port_scan $TARGET$ $PORT$"

This line assumes that there is a script called handle_port_scan in the /usr/local/nagios/libexec/eventhandlers/ directory on firestorm.
The directory and script name can be changed to whatever you want.

Writing The Script

The last thing you need to do is write the handle_port_scan script on firestorm that will send the alert back to the monitoring host. It
might look something like this:

#!/bin/sh

Arguments:
$1 = target
$2 = port

http://www.psionic.com/abacus/portsentry/

Submit port scan to Nagios
/usr/local/nagios/libexec/eventhandlers/submit_check_result firestorm "Port Scans" 2 "Port scan from
$1 on port $2. Host has been firewalled."

Notice that the handle_port_scan script calls the submit_check_result to actually send the alert back to the monitoring host. Assuming
your monitoring host is called monitor, the submit check_result script might look like this (you'll have to modify this to specify the proper
location of the send_nsca program on firestorm):

#!/bin/sh

Arguments
$1 = name of host in service definition
$2 = name/description of service in service definition
$3 = return code
$4 = output

/bin/echo -e "$1\t$2\t$3\t$4\n" | /usr/local/nagios/bin/send_nsca monitor -c
/usr/local/nagios/etc/send_nsca.cfg

Finishing Up

You've now configured everything you need to, so all you have to do is restart the portsentry process on firestorm and restart Nagios
on your monitoring server. That's it! When the Portsentry software on firestorm detects a port scan, you should be getting alerts in
Nagios. The plugin output for the alert will look something like the following:

Port scan from 24.24.137.131 on port 21. Host has been firewalled.

UCD-SNMP (NET-SNMP) Integration

Note: Nagios is not designed to be a replacement for a full-blown SNMP management application like HP OpenView or OpenNMS.
However, you can set things up so that SNMP traps received by a host on your network can generate alerts in Nagios. Here's how...

Introduction

This example explains how to easily generate alerts in Nagios for SNMP traps that are received by the UCD-SNMP snmptrapd daemon.
These directions assume that the host which is receiving SNMP traps is not the same host on which Nagios is running. If your monitoring
box is the same box that is receiving SNMP traps you will need to make a few modifications to the examples I provide. Also, I am
assuming that you having installed the nsca daemon on your monitoring server and the nsca client (send_nsca) on the machine that is
receiving SNMP traps.

For the purposes of this example, I will be describing how I setup Nagios to generate alerts from SNMP traps received by the ArcServe
backup jobs running on my Novell servers. I wanted to get notified when backups failed, so this worked very nicely for me. You'll have to
tweak the examples in order to make it suit your needs.

Defining The Service

First off you're going to have to define a service in your object configuration file for the SNMP traps (in this example, I am defining a
service for ArcServe backup jobs). Assuming that the host that the alerts are originating from is called novellserver, a sample service
definition might look something like this:

define service{
 host_name novellserver
 service_description ArcServe Backup
 is_volatile 1
 active_checks_enabled 0
 passive_checks_enabled 1
 max_check_attempts 1
 contact_groups novell-backup-admins
 notification_interval 120
 notification_period 24x7
 notification_options w,u,c,r
 check_command check_none
 }

Important things to note are the fact that this service has the volatile option enabled. We want this option enabled because we want a
notification to be generated for every alert that comes in. Also of note is the fact that active checks are disabled for the service, while
passive checks are enabled. This means that the service will never be actively checked - all alert information will have to be sent in
passively by the nsca client on the SNMP management host (in my example, it will be called firestorm).

ArcServe and Novell SNMP Configuration

In order to get ArcServe (and my Novell server) to send SNMP traps to my management host, I had to do the following:

1. Modify the ArcServe autopilot job to send SNMP traps on job failures, successes, etc.
2. Edit SYS:\ETC\TRAPTARG.CFG and add the IP address of my management host (the one receiving the SNMP traps)
3. Load SNMP.NLM
4. Load ALERT.NLM to facilitate the actual sending of the SNMP traps

SNMP Management Host Configuration

On my Linux SNMP management host (firestorm), I installed the UCD-SNMP (NET-SNMP) software. Once the software was installed I
had to do the following:

http://www.opennms.org/
http://net-snmp.sourceforge.net/
http://net-snmp.sourceforge.net/

1. Install the ArcServe MIBs (included on the ArcServe installation CD)
2. Edit the snmptrapd configuration file (/etc/snmp/snmptrapd.conf) to define a trap handler for ArcServe alerts. This is detailed

below.
3. Start the snmptrapd daemon to listen for incoming SNMP traps

In order to have the snmptrapd daemon route ArcServe SNMP traps to our Nagios host, we've got to define a traphandler in the
/etc/snmp/snmptrapd.conf file. In my setup, the config file looked something like this:

#############################
ArcServe SNMP Traps
#############################

Tape format failures
traphandle ARCserve-Alarm-MIB::arcServetrap9 /usr/local/nagios/libexec/eventhandlers/handle-arcserve-
trap 9

Failure to read tape header
traphandle ARCserve-Alarm-MIB::arcServetrap10 /usr/local/nagios/libexec/eventhandlers/handle-
arcserve-trap 10

Failure to position tape
traphandle ARCserve-Alarm-MIB::arcServetrap11 /usr/local/nagios/libexec/eventhandlers/handle-
arcserve-trap 11

Cancelled jobs
traphandle ARCserve-Alarm-MIB::arcServetrap12 /usr/local/nagios/libexec/eventhandlers/handle-
arcserve-trap 12

Successful jobs
traphandle ARCserve-Alarm-MIB::arcServetrap13 /usr/local/nagios/libexec/eventhandlers/handle-
arcserve-trap 13

Imcomplete jobs
traphandle ARCserve-Alarm-MIB::arcServetrap14 /usr/local/nagios/libexec/eventhandlers/handle-
arcserve-trap 14

Job failures
traphandle ARCserve-Alarm-MIB::arcServetrap15 /usr/local/nagios/libexec/eventhandlers/handle-
arcserve-trap 15

This example assumes that you have a /usr/local/nagios/libexec/eventhandlers/ directory on your SNMP mangement host and that the
handle-arcserve-trap script exists there. You can modify these to fit your setup. Anyway, the handle-arcserve-trap script on my
management host looked something like this:

#!/bin/sh

Arguments:
$1 = trap type

 # First line passed from snmptrapd is FQDN of host that sent the trap
 read host

 # Given a FQDN, get the short name of the host as it is setup in Nagios
 hostname="unknown"
 case $host in
 novellserver.mylocaldomain.com)
 hostname="novellserver"
 ;;
 nt.mylocaldomain.com)
 hostname="ntserver"
 ;;
 esac

 # Get severity level (OK, WARNING, UNKNOWN, or CRITICAL) and plugin output based on trape type
 state=-1
 output="No output"
 case "$1" in

 # failed to format tape - critical
 11)
 output="Critical: Failed to format tape"
 state=2
 ;;

 # failed to read tape header - critical
 10)
 output="Critical: Failed to read tape header"
 state=2
 ;;

 # failed to position tape - critical
 11)
 output="Critical: Failed to position tape"
 state=2
 ;;

 # backup cancelled - warning
 12)
 output="Warning: ArcServe backup operation cancelled"
 state=1
 ;;

 # backup success - ok
 13)
 output="Ok: ArcServe backup operation successful"
 state=0
 ;;

 # backup incomplete - warning
 14)
 output="Warning: ArcServe backup operation incomplete"
 state=1
 ;;

 # backup failure - critical
 15)
 output="Critical: ArcServe backup operation failed"
 state=2
 ;;
 esac

 # Submit passive check result to monitoring host
 /usr/local/nagios/libexec/eventhandlers/submit_check_result $hostname "ArcServe Backup" $state
"$output"

exit 0

Notice that the handle-arcserve-trap script calls the submit_check_result script to actually send the alert back to the monitoring host.
Assuming your monitoring host is called monitor, the submit check_result script might look like this (you'll have to modify this to specify
the proper location of the send_nsca program on your management host):

#!/bin/sh

Arguments
$1 = name of host in service definition

$2 = name/description of service in service definition
$3 = return code
$4 = output

/bin/echo -e "$1\t$2\t$3\t$4\n" | /usr/local/nagios/bin/send_nsca monitor -c
/usr/local/nagios/etc/send_nsca.cfg

Finishing Up

You've now configured everything you need to, so all you have to do is restart the Nagios on your monitoring server. That's it! You should
be getting alerts in Nagios whenever ArcServe jobs fail, succeed, etc.

TCP Wrapper Integration

Introduction

This example explains how to easily generate alerts in Nagios for connection attempts that are rejected by TCP wrappers. These
directions assume that the host which you are generating alerts for (i.e. the host you are using TCP wrappers on) is not the same
host on which Nagios is running. If you want to generate alerts on the same host that Nagios is running you will need to make a few
modifications to the examples I provide. Also, I am assuming that you having installed the nsca daemon on your monitoring server
and the nsca client (send_nsca) on the machine that you are generating TCP wrapper alerts from.

Defining The Service

First off you're going to have to define a service in your object configuration file for the TCP wrapper alerts. Assuming that the host
that the alerts are originating from is called firestorm, a sample service definition might look something like this:

define service{
 host_name firestorm
 service_description TCP Wrappers
 is_volatile 1
 active_checks_enabled 0
 passive_checks_enabled 1
 max_check_attempts 1
 contact_groups security-admins
 notification_interval 120
 notification_period 24x7
 notification_options w,u,c,r
 check_command check_none
 }

Important things to note are the fact that this service has the volatile option enabled. We want this option enabled because we want a
notification to be generated for every alert that comes in. Also of note is the fact that active checks of the service as disabled, while
passive checks are enabled. This means that the service will never be actively checked - all alert information will have to be sent in
passively by the nsca client on the firestorm host.

Configuring TCP Wrappers

Now you're going to have to modify the /etc/hosts.deny file on the host called firestorm. In order to have the TCP wrappers send an
alert to the monitoring host whenever a connection attempt is denied, you'll have to add a line similiar to the following:

ALL: ALL: RFC931: twist (/usr/local/nagios/libexec/eventhandlers/handle_tcp_wrapper %h %d) &

This line assumes that there is a script called handle_tcp_wrapper in the /usr/local/nagios/libexec/eventhandlers/ directory on
firestorm. The directory and script name can be changed to whatever you want.

Writing The Script

The last thing you need to do is write the handle_tcp_wrapper script on firestorm that will send the alert back to the monitoring host.
It might look something like this:

#!/bin/sh

/usr/local/nagios/libexec/eventhandlers/submit_check_result firestorm "TCP Wrappers" 2 "Denied $2-
$1" > /dev/null 2> /dev/null

Notice that the handle_tcp_wrapper script calls the submit_check_result script to actually send the alert back to the monitoring host.
Assuming your monitoring host is called monitor, the submit check_result script might look like this (you'll have to modify this to
specify the proper location of the send_nsca program on firestorm):

#!/bin/sh

Arguments
$1 = name of host in service definition
$2 = name/description of service in service definition
$3 = return code
$4 = output

/bin/echo -e "$1\t$2\t$3\t$4\n" | /usr/local/nagios/bin/send_nsca monitor -c
/usr/local/nagios/etc/send_nsca.cfg

Finishing Up

You've now configured everything you need to, so all you have to do is restart the inetd process on firestorm and restart Nagios on
your monitoring server. That's it! When the TCP wrappers on firestorm deny a connection attempt, you should be getting alerts in
Nagios. The plugin output for the alert will look something like the following:

Denied sshd2-sdn-ar-002mnminnP321.dialsprint.net

Securing Nagios

Introduction

This is intended to be a brief overview of some things you should keep in mind when installing Nagios, so as to
not set it up in an insecure manner. This document is new, so if anyone has additional notes or comments on
securing Nagios, please drop me a note at nagios@nagios.org

Do Not Run Nagios As Root!

Nagios doesn't need to run as root, so don't do it. Even if you start Nagios at boot time with an init script, you
can force it to drop privileges after startup and run as another user/group by using the nagios_user and
nagios_group directives in the main config file.

If you need to execute event handlers or plugins which require root access, you might want to try using sudo.

Enable External Commands Only If Necessary

By default, external commands are disabled. This is done to prevent an admin from setting up Nagios and
unknowingly leaving its command interface open for use by "others".. If you are planning on using event
handlers or issuing commands from the web interface, you will have to enable external commands. If you aren't
planning on using event handlers or the web interface to issue commands, I would recommend leaving external
commands disabled.

Set Proper Permissions On The External Command File

If you enable external commands, make sure you set proper permissions on the /usr/local/nagios/var/rw
directory. You only want the Nagios user (usually nagios) and the web server user (usually nobody) to have
permissions to write to the command file. If you've installed Nagios on a machine that is dedicated to monitoring
and admin tasks and is not used for public accounts, that should be fine.

If you've installed it on a public or multi-user machine, allowing the web server user to have write access to the
command file can be a security problem. After all, you don't want just any user on your system controlling
Nagios through the external command file. In this case, I would suggest only granting write access on the
command file to the nagios user and using something like CGIWrap to run the CGIs as the nagios user instead
of nobody.

Instructions on setting up permissions for the external command file can be found here.

Require Authentication In The CGIs

I would strongly suggest requiring authentication for accessing the CGIs. Once you do that, read the

mailto:nagios@nagios.org
http://www.courtesan.com/sudo/sudo.html
http://cgiwrap.unixtools.org/
file:///C|/Program%20Files/Leech/Sites/Nagios%20Docs/nagios.sourceforge.net/docs/1_0/commandfile.html

documentation on the default rights that authenticated contacts have, and only authorize specific contacts for
additional rights as necessary. Instructions on setting up authentication and configuring authorization rights can
be found here. If you disable the CGI authentication features using the use_authentication directive in the CGI
config file, the command CGI will refuse to write any commands to the external command file. After all, you
don't want the world to be able to control Nagios do you?

Use Full Paths In Command Definitions

When you define commands, make sure you specify the full path to any scripts or binaries you're executing.

Hide Sensitive Information With $USERn$ Macros

The CGIs read the main config file and object config file(s), so you don't want to keep any sensitive information
(usernames, passwords, etc) in there. If you need to specify a username and/or password in a command
definition use a $USERn$ macro to hide it. $USERn$ macros are defined in one or more resource files. The
CGIs will not attempt to read the contents of resource files, so you can set more restrictive permissions (600 or
660) on them. See the sample resource.cfg file in the base of the Nagios distribution for an example of how to
define $USERn$ macros.

Strip Dangerous Characters From Macros

Use the illegal_macro_output_chars directive to strip dangerous characters from the $OUTPUT$ and
$PERFDATA$ macros before they're used in notifications, etc. Dangerous characters can be anything that
might be interpreted by the shell, thereby opening a security hole. An example of this is the presence of
backtick (`) characters in the $OUTPUT$ and/or $PERFDATA$ macros, which could allow an attacker to
execute an arbitrary command as the nagios user (one good reason not to run Nagios as the root user).

Tuning Nagios For Maximum Performance

Introduction

So you've finally got Nagios up and running and you want to know how you can tweak it a bit... Here are a few
things to look at for optimizing Nagios. Let me know if you think of any others...

Optimization Tips:

1. Use aggregated status updates. Enabling aggregated status updates (with the
aggregate_status_updates option) will greatly reduce the load on your monitoring host because it won't
be constantly trying to update the status log. This is especially recommended if you are monitoring a
large number of services. The main trade-off with using aggregated status updates is that changes in
the states of hosts and services will not be reflected immediately in the status file. This may or may not
be a big concern for you.

2. Use a ramdisk for holding status data. If you're using the standard status log and you're not using
aggregated status updates, consider putting the directory where the status log is stored on a ramdisk.
This will speed things up quite a bit (in both the core program and the CGIs) because it saves a lot of
interrupts and disk thrashing.

3. Check service latencies to determine best value for maximum concurrent checks. Nagios can
restrict the number of maximum concurrently executing service checks to the value you specify with the
max_concurrent_checks option. This is good because it gives you some control over how much load
Nagios will impose on your monitoring host, but it can also slow things down. If you are seeing high
latency values (> 10 or 15 seconds) for the majority of your service checks (via the extinfo CGI), you are
probably starving Nagios of the checks it needs. That's not Nagios's fault - its yours. Under ideal
conditions, all service checks would have a latency of 0, meaning they were executed at the exact time
that they were scheduled to be executed. However, it is normal for some checks to have small latency
values. I would recommend taking the minimum number of maximum concurrent checks reported when
running Nagios with the -s command line argument and doubling it. Keep increasing it until the average
check latency for your services is fairly low. More information on service check scheduling can be found
here.

4. Use passive checks when possible. The overhead needed to process the results of passive service
checks is much lower than that of "normal" active checks, so make use of that piece of info if you're
monitoring a slew of services. It should be noted that passive service checks are only really useful if you
have some external application doing some type of monitoring or reporting, so if you're having Nagios
do all the work, this won't help things.

5. Avoid using interpreted plugins. One thing that will significantly reduce the load on your monitoring
host is the use of compiled (C/C++, etc.) plugins rather than interpreted script (Perl, etc) plugins. While
Perl scripts and such are easy to write and work well, the fact that they are compiled/interpreted at
every execution instance can significantly increase the load on your monitoring host if you have a lot of
service checks. If you want to use Perl plugins, consider compiling them into true executables using
perlcc(1) (a utility which is part of the standard Perl distribution) or compiling Nagios with an embedded

Perl interpreter (see below).

6. Use the embedded Perl interpreter. If you're using a lot of Perl scripts for service checks, etc., you will
probably find that compiling an embedded Perl interpreter into the Nagios binary will speed things up. In
order to compile in the embedded Perl interpreter, you'll need to supply the --enable-embedded-perl
option to the configure script before you compile Nagios. Also, if you use the --with-perlcache option,
the compiled version of all Perl scripts processed by the embedded interpreter will be cached for later
reuse.

7. Optimize host check commands. If you're checking host states using the check_ping plugin you'll find
that host checks will be performed much faster if you break up the checks. Instead of specifying a
max_attempts value of 1 in the host definition and having the check_ping plugin send 10 ICMP packets
to the host, it would be much faster to set the max_attempts value to 10 and only send out 1 ICMP
packet each time. This is due to the fact that Nagios can often determine the status of a host after
executing the plugin once, so you want to make the first check as fast as possible. This method does
have its pitfalls in some situations (i.e. hosts that are slow to respond may be assumed to be down), but
I you'll see faster host checks if you use it. Another option would be to use a faster plugin (i.e.
check_fping) as the host_check_command instead of check_ping.

8. Don't use agressive host checking. Unless you're having problems with Nagios recognizing host
recoveries, I would recommend not enabling the use_aggressive_host_checking option. With this option
turned off host checks will execute much faster, resulting in speedier processing of service check
results. However, host recoveries can be missed under certain circumstances when this it turned off.
For example, if a host recovers and all of the services associated with that host stay in non-OK states
(and don't "wobble" between different non-OK states), Nagios may miss the fact that the host has
recovered. A few people may need to enable this option, but the majority don't and I would recommend
not using it unless you find it necessary...

9. Increase external command check interval. If you're processing a lot of external commands (i.e.
passive checks in a distributed setup, you'll probably want to set the command_check_interval variable
to -1. This will cause Nagios to check for external commands as often as possible. This is important
because most systems have small pipe buffer sizes (i.e. 4KB). If Nagios doesn't read the data from the
pipe fast enough, applications that write to the external command file (i.e. the NSCA daemon) will block
and wait until there is enough free space in the pipe to write their data.

10. Optimize hardware for maximum performance. Your system configuration and your hardware setup
are going to directly affect how your operating system performs, so they'll affect how Nagios performs.
The most common hardware optimization you can make is with your hard drives. CPU and memory
speed are obviously factors that affect performance, but disk access is going to be your biggest
bottlenck. Don't store plugins, the status log, etc on slow drives (i.e. old IDE drives or NFS mounts). If
you've got them, use UltraSCSI drives or fast IDE drives. An important note for IDE/Linux users is that
many Linux installations do not attempt to optimize disk access. If you don't change the disk access
parameters (by using a utility like hdparam), you'll loose out on a lot of the speedy features of the new
IDE drives.

Using Macros In Commands

Macros

One of the features available in Nagios is the ability to use macros in command defintions. Immediately prior to the execution of a command, Nagios will replace all
macros in the command with their corresponding values. This allows you to define a few generic commands to handle all your needs.

Macro Validity

Although macros can be used in all commands you define, not all macros may be "valid" in a particular type of command. For example, some macros may only be valid
during service notification commands, whereas other may only be valid during host check commands. There are nine types of commands that Nagios recognizes and
treats differently. They are as follows:

1. Service checks
2. Service notifications
3. Host checks
4. Host notifications
5. Service event handlers and/or a global service event handler
6. Host event handlers and/or a global host event handler
7. OCSP command
8. Service performance data commands
9. Host performance data commands

The table below lists all macros currently available in Nagios, along with a brief description of each and the types of commands in which they are valid. If a macro is used
in a command in which it is invalid, it is replaced with an empty string. It should be noted that macros consist of all uppercase characters and are enclosed in $ characters.

Macro Availability Chart

Macro Name Macro Description Service
Checks

Service
Notifications

Host
Checks

Host
Notifications

Service
Event
Handlers
& Global
Service
Event
Handler &
OCSP
Command

Host
Event
Handlers
& Global
Host
Event
Handler

Service
Performance
Data
Commands

Host
Performance
Data
Commands

$CONTACTNAME$

Short name for the contact
(i.e. "jdoe") that is being
notified of a host or service
problem

No Yes No Yes No No No No

$CONTACTALIAS$
Long name/description for
the contact (i.e. "John
Doe") being notified

No Yes No Yes No No No No

$CONTACTEMAIL$ Email address of the
contact being notified No Yes No Yes No No No No

$CONTACTPAGER$ Pager number/address of
the contact being notified No Yes No Yes No No No No

$HOSTNAME$

Short name for the host
(i.e. "biglinuxbox"). During
a service notification, this
refers to the host
associated with the
service.

No Yes No Yes Yes Yes Yes Yes

$HOSTALIAS$
Long name/description for
the host (i.e. "Big Linux
Server")

No Yes No Yes Yes Yes Yes Yes

$HOSTADDRESS$ The IP address of the host Yes Yes Yes Yes Yes Yes Yes Yes

$HOSTSTATE$
The current state of the
host ("UP", "DOWN", or
"UNREACHABLE")

No Yes No Yes Yes Yes Yes Yes

$ARGn$

The nth argument passed
to the service check
command. Nagios
supports up to 32
argument macros
($ARG1$ through
$ARG32$).

Yes No No No No No No No

$SERVICEDESC$

The long name/description
of the service being
monitored (i.e. "Main
Website")

No Yes No No Yes No Yes No

$SERVICESTATE$

The current status of the
service being monitored
("WARNING",
"UNKNOWN",
"CRITICAL", or "OK")

No Yes No No Yes No Yes No

$OUTPUT$

The text output from the
service or host check (i.e.
"FTP ok - 1 second
response time"). For
service notifications and
event handlers, this will
contain the text output
from the service check.
For host notifications and
event handlers, this will
contain the text output
from the host check.

No Yes No Yes Yes Yes Yes Yes

$PERFDATA$

This macro contains any
performance data that may
have been returned by the
service or host check.

No Yes No Yes Yes Yes Yes Yes

$EXECUTIONTIME$

This is the number of
seconds that the host or
service check took to
execute (i.e. the amount of
time the check was
executing).

No Yes No Yes Yes Yes Yes Yes

$LATENCY$

This is the number of
seconds that a service
check lagged behind its
scheduled check time. For
instance, if a check was
scheduled for 03:04:15
and it didn't get executed
until 03:14:17, there would
be a check latency of 2
seconds.

No Yes No No Yes No Yes No

$NOTIFICATIONTYPE$

Identifies the type of
notification that is being
sent ("PROBLEM",
"RECOVERY", or
"ACKNOWLEDGEMENT").

No Yes No Yes No No No No

$NOTIFICATIONNUMBER$

The current notification
number for the service or
host. The notification
number increases by one
(1) each time a new
notification is sent out for a
host or service (except for
acknowledgements). The
notification number is reset
to 0 when the host or
service recovers (after the
recovery notification has
gone out).
Acknowledgements do not
cause the notification
number to increase.

No Yes No Yes No No No No

$DATETIME$
Date/time stamp (i.e. Fri
Oct 13 00:30:28 CDT
2000)

No Yes No Yes Yes Yes Yes Yes

$SHORTDATETIME$ Date/time stamp (i.e. 10-
13-2000 00:30:28) No Yes No Yes Yes Yes Yes Yes

$DATE$ Date stamp (i.e. 10-13-
2000) No Yes No Yes Yes Yes Yes Yes

$TIME$ Time stamp (i.e. 00:30:28) No Yes No Yes Yes Yes Yes Yes

$TIMET$
Time stamp in time_t
format (seconds since the
UNIX epoch)

No Yes No Yes Yes Yes Yes Yes

$LASTCHECK$

This is a timestamp in
time_t format (seconds
since the UNIX epoch)
indicating the time at which
a service or host check
was last performed.

No Yes No Yes Yes Yes Yes Yes

$LASTSTATECHANGE$

This is a timestamp in
time_t format (seconds
since the UNIX epoch)
indicating the time at which
a service or host last
changed state.

No Yes No Yes Yes Yes Yes Yes

$ADMINEMAIL$
Email address for the local
administrator (of the host
doing the monitoring)

Yes Yes Yes Yes Yes Yes Yes Yes

$ADMINPAGER$ Pager number/address for
the local administrator Yes Yes Yes Yes Yes Yes Yes Yes

$STATETYPE$

The state type for the
current service or host
check ("HARD" or
"SOFT"). Soft states occur
when service or host
checks return a non-OK
state and are in the
process of being retried.
Hard states result when
service or host checks
have been checked a
specified maximum
number of times.
Notifications are sent out
only when hard state
changes occur.

No No No No Yes Yes Yes Yes

$SERVICEATTEMPT$

This refers to the number
of the current service
check retry. For instance, if
this is the second time that
the service is being
rechecked, this will be the
number two. Current
attempt number is only
useful when writing service
event handlers for "soft"
states that take a specific
action based on the
service retry number.

No No No No Yes No Yes No

$HOSTATTEMPT$

This refers to the number
of the current host check
retry. For instance, if this is
the second time that the
host is being rechecked,
this will be the number
two. Current attempt
number is only useful
when writing host event
handlers for "soft" states
that take a specific action
based on the host retry
number.

No No No No No Yes No Yes

$USERn$

The nth user-definable
macro. User macros can
be defined in one or more
resource files . Nagios
supports up to thrity-two
user macros ($USER1$
through $USER32$).

Yes Yes Yes Yes Yes Yes Yes Yes

Information On The CGIs

Introduction

The various CGIs distributed with Nagios are described here, along with the authorization requirements for
accessing and using each CGI. By default the CGIs require that you have authenticated to the web server and are
authorized to view any information you are requesting. For more information on configuring your web server and
CGI configuration file to allow for this, read the sections on setting up the web interface and CGI authorization.

Index

Status CGI
Status map CGI
WAP interface CGI
Status world CGI (VRML)
Tactical overview CGI
Network outages CGI
Configuration CGI
Command CGI
Extended information CGI
Event log CGI
Alert history CGI
Notifications CGI
Trends CGI
Availability reporting CGI
Alert histogram CGI
Alert summary CGI

Status CGI

File Name: status.cgi

Description:
This is the most important CGI included with Nagios. It allows you to view the current status of all hosts and
services that are being monitored. The status CGI can produce two main types of output - a status overview of all
host groups (or a particular host group) and a detailed view of all services (or those associated with a particular
host). Pretty icons can be associated with hosts by defining extended host and service information entries.

Authorization Requirements:

● If you are authorized for all hosts you can view all hosts and all services.
● If you are authorized for all services you can view all services.
● If you are an authenticated contact you can view all hosts and services for which you are a contact.

Status Map CGI

File Name: statusmap.cgi

Description:
This CGI creates a map of all hosts that you have defined on your network. The CGI uses Thomas Boutell's gd
library (version 1.6.3 or higher) to create a PNG image of your network layout. The coordinates used when drawing
each host (along with the optional pretty icons) are taken from extended host information definitions. If you'd prefer
to let the CGI automatically generate drawing coordinates for you, use the default_statusmap_layout directive to
specify a layout algorithm that should be used. If you can't seem to find this CGI, or if you have get errors when
trying to compile or run it, read this FAQ.

Authorization Requirements:

● If you are authorized for all hosts you can view all hosts.
● If you are an authenticated contact you can view hosts for which you are a contact.

Note: Users who are not authorized to view specific hosts will see unknown nodes in those positions. I realize that
they really shouldn't see anything there, but it doesn't make sense to even generate the map if you can't see all the
host dependencies...

WAP Interface CGI

http://www.boutell.com/gd/

File Name: statuswml.cgi

Description:
This CGI serves as a WAP interface to network status information. If you have a WAP-enable device (i.e. an
Internet-ready cellphone), you can view status information while you're on the go. Different status views include
hostgroup summary, hostgroup overview, host detail, service detail, all problems, and unhandled problems. In
addition to viewing status information, you can also disable notifications and checks and acknowledge problems
from your cellphone. Pretty cool, huh?

Authorization Requirements:

● If you are authorized for system information you can view Nagios process information.
● If you are authorized for all hosts you can view status data for all hosts and services.
● If you are authorized for all services you can view status data for all services.
● If you are an authenticated contact you can view status data for all hosts and services for which you are a

contact.

Status World CGI (VRML)

File Name: statuswrl.cgi

Description:
This CGI creates a 3-D VRML model of all hosts that you have defined on your network. Coordinates used when
drawing the hosts (as well as pretty texture maps) are defined using extended host information definitions. If you'd
prefer to let the CGI automatically generate drawing coordinates for you, use the default_statuswrl_layout directive
to specify a layout algorithm that should be used. You'll need a VRML browser (like Cortona, Cosmo Player or
WorldView) installed on your system before you can actually view the generated model.

Authorization Requirements:

● If you are authorized for all hosts you can view all hosts.
● If you are an authenticated contact you can view hosts for which you are a contact.

Note: Users who are not authorized to view specific hosts will see unknown nodes in those positions. I realize that
they really shouldn't see anything there, but it doesn't make sense to even generate the map if you can't see all the
host dependencies...

Tactical Overview CGI

File Name: tac.cgi

Description:
This CGI is designed to server as a "birds-eye view" of all network monitoring activity. It allows you to quickly see
network outages, host status, and service status. It distinguishes between problems that have been "handled" in
some way (i.e. been acknowledged, had notifications disabled, etc.) and those which have not been handled, and
thus need attention. Very useful if you've got a lot of hosts/services you're monitoring and you need to keep a
single screen up to alert you of problems.

Authorization Requirements:

● If you are authorized for all hosts you can view all hosts and all services.
● If you are authorized for all services you can view all services.
● If you are an authenticated contact you can view all hosts and services for which you are a contact.

Network Outages CGI

http://www.parallelgraphics.com/cortona/
http://www.cosmosoftware.com/
http://www.intervista.com/

File Name: outages.cgi

Description:
This CGI will produce a listing of "problem" hosts on your network that are causing network outages. This can be
particularly useful if you have a large network and want to quickly identify the source of the problem. Hosts are
sorted based on the severity of the outage they are causing. More information on how the network outage CGI
works can be found here.

Authorization Requirements:

● If you are authorized for all hosts you can view all hosts.
● If you are an authenticated contact you can view hosts for which you are a contact.

Configuration CGI

File Name: config.cgi

Description:
This CGI allows you to view objects (i.e. hosts, host groups, contacts, contact groups, time periods, services, etc.)
that you have defined in your object configuration file(s).

Authorization Requirements:

● You must be authorized for configuration information in order to any kind of configuration information.

Command CGI

File Name: cmd.cgi

Description:
This CGI allows you to send commands to the Nagios process. Although this CGI has several arguments, you
would be better to leave them alone. Most will change between different revisions of Nagios. Use the extended
information CGI as a starting point for issuing commands.

Authorization Requirements:

● You must be authorized for system commands in order to issue commands that affect the Nagios process
(restarts, shutdowns, mode changes, etc.).

● If you are authorized for all host commands you can issue commands for all hosts and services.
● If you are authorized for all service commands you can issue commands for all services.
● If you are an authenticated contact you can issue commands for all hosts and services for which you are a

contact.

Notes:

● If you have chosen not to use authentication with the CGIs, this CGI will not allow anyone to issue
commands to Nagios. This is done for your own protection. I would suggest removing this CGI altogether if
you decide not to use authentication with the CGIs.

● In order for the CGI to issue commands to Nagios, you will have to set the proper file and directory
permissions as described in this FAQ.

Extended Information CGI

File Name: extinfo.cgi

Description:
This CGI allows you to view Nagios process information, host and service state statistics, host and service
comments, and more. It also serves as a launching point for sending commands to Nagios via the command CGI.
Although this CGI has several arguments, you would be better to leave them alone - they are likely to change
between different releases of Nagios. You can access this CGI by clicking on the 'Network Health' and 'Process
Information' links on the side navigation bar, or by clicking on a host or service link in the output of the status CGI.

Authorization Requirements:

● You must be authorized for system information in order to view Nagios process information.
● If you are authorized for all hosts you can view extended information for all hosts and services.
● If you are authorized for all services you can view extended information for all services.
● If you are an authenticated contact you can view extended information for all hosts and services for which

you are a contact.

Event Log CGI

File Name: showlog.cgi

Description:
This CGI will display the log file. If you have log rotation enabled, you can browse notifications present in archived
log files by using the navigational links near the top of the page.

Authorization Requirements:

● You must be authorized for system information in order to view the log file.

Alert History CGI

File Name: history.cgi

Description:
This CGI is used to display the history of problems with either a particular host or all hosts. The output is basically a
subset of the information that is displayed by the log file CGI. You have the ability to filter the output to display only
the specific types of problems you wish to see (i.e. hard and/or soft alerts, various types of service and host alerts,
all types of alerts, etc.). If you have log rotation enabled, you can browse history information present in archived log
files by using the navigational links near the top of the page.

Authorization Requirements:

● If you are authorized for all hosts you can view history information for all hosts and all services.
● If you are authorized for all services you can view history information for all services.
● If you are an authenticated contact you can view history information for all services and hosts for which you

are a contact.

Notifications CGI

File Name: notifications.cgi

Description:
This CGI is used to display host and service notifications that have been sent to various contacts. The output is
basically a subset of the information that is displayed by the log file CGI. You have the ability to filter the output to
display only the specific types of notifications you wish to see (i.e. service notifications, host notifications,
notifications sent to specific contacts, etc). If you have log rotation enabled, you can browse notifications present in
archived log files by using the navigational links near the top of the page.

Authorization Requirements:

● If you are authorized for all hosts you can view notifications for all hosts and all services.
● If you are authorized for all services you can view notifications for all services.
● If you are an authenticated contact you can view notifications for all services and hosts for which you are a

contact.

Trends CGI

File Name: trends.cgi

Description:
This CGI is used to create a graph of host or service states over an arbitrary period of time. In order for this CGI to
be of much use, you should enable log rotation and keep archived logs in the path specified by the
log_archive_path directive. The CGI uses Thomas Boutell's gd library (version 1.6.3 or higher) to create the trends
image. If you can't seem to find this CGI or if you have get errors when trying to compile or run it, read this FAQ.

Authorization Requirements:

● If you are authorized for all hosts you can view trends for all hosts and all services.
● If you are authorized for all services you can view trends for all services.
● If you are an authenticated contact you can view trends for all services and hosts for which you are a

contact.

Availability Reporting CGI

File Name: avail.cgi

http://www.boutell.com/gd/

Description:
This CGI is used to report on the availability of hosts and services over a user-specified period of time. In order for
this CGI to be of much use, you should enable log rotation and keep archived logs in the path specified by the
log_archive_path directive.

Authorization Requirements:

● If you are authorized for all hosts you can view availability data for all hosts and all services.
● If you are authorized for all services you can view availability data for all services.
● If you are an authenticated contact you can view availability data for all services and hosts for which you

are a contact.

Alert Histogram CGI

File Name: histogram.cgi

Description:
This CGI is used to report on the availability of hosts and services over a user-specified period of time. In order for
this CGI to be of much use, you should enable log rotation and keep archived logs in the path specified by the
log_archive_path directive. The CGI uses Thomas Boutell's gd library (version 1.6.3 or higher) to create the
histogram image. If you can't seem to find this CGI or if you have get errors when trying to compile or run it, read
this FAQ.

Authorization Requirements:

● If you are authorized for all hosts you can view histograms for all hosts and all services.
● If you are authorized for all services you can view histograms for all services.
● If you are an authenticated contact you can view histograms for all services and hosts for which you are a

contact.

Alert Summary CGI

http://www.boutell.com/gd/

File Name: summary.cgi

Description:
This CGI provides some generic reports about host and service alert data, including alert totals, top alert
producers, etc.

Authorization Requirements:

● If you are authorized for all hosts you can view summary information for all hosts and all services.
● If you are authorized for all services you can view summary information for all services.
● If you are an authenticated contact you can view summary information for all services and hosts for which

you are a contact.

Custom CGI Headers and Footers

Introduction

If you're doing custom installs of Nagios for clients, you may want to have a custom header and/or footer
displayed in the output of the CGIs. This is particularly useful for displaying support contact information, etc. to
the end user.

It is important to note that custom headers and footers are not processed in any way before they are displayed.
The contents of the header and footer include files are simply read and displayed in the CGI output. That
means they can only contain information a web browser can understand (HTML, JavaScript, etc.).

How Does It Work?

You can include custom headers and footers in the output of the CGIs by dropping some appropriately named
HTML files in the ssi/ subdirectory of the Nagios HTML directory (i.e. /usr/local/nagios/share/ssi).

Custom headers are included immediately after the <BODY> tag in the CGI output. Similarly, customer
headers are included immediately before the closing </BODY> tag.

There are two types of customer headers and footers:

● Global headers/footers. These files should be named common-header.ssi and common-footer.ssi,
respectively. If these files exist, they will be included in the output of all CGIs.

● CGI-specific headers/footers. These files should be named in the format CGINAME-header.ssi and
CGINAME-footer.ssi, where CGINAME is the physical name of the CGI without the .cgi extension. For
example, the header and footer files for the alert summary CGI (summary.cgi) would be named
summary-header.ssi and summary-footer.ssi, respectively.

You are not required to use any custom headers or footers. You can use only a global header if you wish. You
can use only CGI-specific headers and a global footer if you wish. Whatever you want. Really.

	Nagios Version 1.0 Documentation
	Table Of Contents
	About Nagios
	What's New
	Nagios FAQs
	Advice for Beginners
	Installing Nagios
	Setting Up The Web Interface

	Configuring Nagios
	Main Configuration File Options
	Object Configuration Data
	CGI Configuration File Options
	Authentication And Authorization In The CGIs
	Extended Information Configuration

	Running Nagios
	Verifying Your Nagios Configuration
	Starting Nagios
	Stopping and Restarting Nagios

	Nagios Plugins
	Nagios Addons
	Theory of Operation
	Determining Status and Reachability of Network Hosts
	Network Outages
	Notifications
	Plugin Theory
	Service Check Scheduling
	State Types
	Time Periods

	Advanced Topics
	Event Handlers
	External Commands
	Indirect Host and Service Checks
	Passive Service Checks
	Volatile Services
	Service Result Freshness Checks
	Distributed Monitoring
	Redundant and Failover Network Monitoring
	Detection and Handling of State Flapping
	Service Check Parallelization
	Notification Escalations
	Monitoring Service and Host Clusters
	Host and Service Dependencies
	State Stalking
	Performance Data
	Scheduled Downtime
	Database Support
	Using The Embedded Perl Interpreter
	Object Inheritence Using Template-Based Config Data
	Time-Saving Tricks For Template-Based Object Definitions

	Integration with Other Software
	Portsentry Integration
	UCD-SNMP (NET-SNMP) Integration
	TCP Wrapper Integration

	Miscellaneous
	Securing Nagios
	Tuning Nagios For Maximum Performance
	Using Macros In Commands
	Information On The CGIs
	Custom CGI Headers and Footers

